Suppr超能文献

参与urdamycin生物合成的糖基转移酶的两个序列元件负责底物特异性和酶活性。

Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity.

作者信息

Hoffmeister D, Ichinose K, Bechthold A

机构信息

Albert-Ludwigs-Universität Freiburg, Pharmazeutische Biologie, Stefan-Meier-Strasse, Germany.

出版信息

Chem Biol. 2001 Jun;8(6):557-67. doi: 10.1016/s1074-5521(01)00039-4.

Abstract

BACKGROUND

Two deoxysugar glycosyltransferases (GTs), UrdGT1b and UrdGT1c, involved in urdamycin biosynthesis share 91% identical amino acids. However, the two GTs show different specificities for both nucleotide sugar and acceptor substrate. Generally, it is proposed that GTs are two-domain proteins with a nucleotide binding domain and an acceptor substrate site with the catalytic center in an interface cleft between these domains. Our work aimed at finding out the region responsible for determination of substrate specificities of these two urdamycin GTs.

RESULTS

A series of 10 chimeric GT genes were constructed consisting of differently sized and positioned portions of urdGT1b and urdGT1c. Gene expression experiments in host strains Streptomyces fradiae Ax and XTC show that nine of 10 chimeric GTs are still functional, with either UrdGT1b- or UrdGT1c-like activity. A 31 amino acid region (aa 52-82) located close to the N-terminus of these enzymes, which differs in 18 residues, was identified to control both sugar donor and acceptor substrate specificity. Only one chimeric gene product of the 10 was not functional. Targeted stepwise alterations of glycine 226 (G226R, G226S, G226SR) were made to reintroduce residues conserved among streptomycete GTs. Alterations G226S and G226R restored a weak activity, whereas G226SR showed an activity comparable with other functional chimeras.

CONCLUSIONS

A nucleotide sugar binding motif is present in the C-terminal moiety of UrdGT1b and UrdGT1c from S. fradiae. We could demonstrate that it is an N-terminal section that determines specificity for the nucleotide sugar and also the acceptor substrate. This finding directs the way towards engineering this class of streptomycete enzymes for antibiotic derivatization applications. Amino acids 226 and 227, located outside the putative substrate binding site, might be part of a larger protein structure, perhaps a solvent channel to the catalytic center. Therefore, they could play a role in substrate accessibility to it.

摘要

背景

参与urdamycin生物合成的两种脱氧糖糖基转移酶(GTs),UrdGT1b和UrdGT1c,氨基酸序列有91%的同一性。然而,这两种GTs对核苷酸糖和受体底物表现出不同的特异性。一般来说,GTs是具有核苷酸结合结构域和受体底物位点的双结构域蛋白,催化中心位于这些结构域之间的界面裂隙处。我们的工作旨在找出决定这两种urdamycin GTs底物特异性的区域。

结果

构建了一系列10个嵌合GT基因,由urdGT1b和urdGT1c不同大小和位置的部分组成。在宿主菌株弗氏链霉菌Ax和XTC中进行的基因表达实验表明,10个嵌合GTs中有9个仍然具有功能,具有UrdGT1b样或UrdGT1c样活性。在这些酶的N端附近发现了一个31个氨基酸的区域(第52 - 82位氨基酸),该区域有18个残基不同,它控制着糖供体和受体底物的特异性。10个嵌合基因产物中只有一个没有功能。对甘氨酸226进行靶向逐步改变(G226R、G226S、G226SR),以重新引入链霉菌GTs中保守的残基。G226S和G226R的改变恢复了较弱的活性,而G226SR表现出与其他功能性嵌合体相当的活性。

结论

来自弗氏链霉菌的UrdGT1b和UrdGT1c的C端部分存在核苷酸糖结合基序。我们可以证明,决定核苷酸糖和受体底物特异性的是N端部分。这一发现为通过工程改造这类链霉菌酶用于抗生素衍生化应用指明了方向。位于假定底物结合位点之外的氨基酸226和227,可能是更大蛋白质结构的一部分,也许是通向催化中心的溶剂通道。因此,它们可能在底物进入催化中心的过程中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验