Fewster R M, Buckland S T
School of Mathematics and Statistics, University of St. Andrews, Mathematical Institute, Fife, UK.
Biometrics. 2001 Jun;57(2):495-501. doi: 10.1111/j.0006-341x.2001.00495.x.
We present a method for assessing similarity between species maps of presence and absence or abundance that emphasizes global features while ignoring minor local dissimilarities. The method arranges sites into small groups, or cliques, and allows controlled changes to be made within cliques to reduce the influence of local discrepancies. Resulting measures of similarity are visually more satisfactory than traditional indices. We show that the similarity indices are useful for model selection by comparing observed spatial patterns with those predicted by different fitted models. Examples are provided for spatial distributions of oribatid mites (Acari, Oribatei), woodlarks (Lullula arborea), and red deer (Cervus elaphus).
我们提出了一种评估物种存在与缺失或丰度地图之间相似性的方法,该方法强调全局特征,同时忽略微小的局部差异。该方法将位点排列成小的组或团,并允许在团内进行可控的变化,以减少局部差异的影响。由此产生的相似性度量在视觉上比传统指标更令人满意。我们表明,通过将观察到的空间模式与不同拟合模型预测的模式进行比较,相似性指数有助于模型选择。文中提供了甲螨(蜱螨亚纲,甲螨目)、林百灵(林鹨)和马鹿(马鹿)空间分布的示例。