Suppr超能文献

海洋系统耦合生物/物理模型的技能评估

Skill Assessment for Coupled Biological/Physical Models of Marine Systems.

作者信息

Stow Craig A, Jolliff Jason, McGillicuddy Dennis J, Doney Scott C, Allen J Icarus, Friedrichs Marjorie A M, Rose Kenneth A, Wallhead Philip

机构信息

NOAA, Great Lakes Environmental Research Laboratory, 2205 Commonwealth Blvd., Ann Arbor, MI USA, 734-741-2055 (fax).

Naval Research Laboratory, Stennis Space Center, MS USA, 228-688-4149 (fax).

出版信息

J Mar Syst. 2009 Feb 20;76(1-2):4-15. doi: 10.1016/j.jmarsys.2008.03.011. Epub 2008 May 24.

Abstract

Coupled biological/physical models of marine systems serve many purposes including the synthesis of information, hypothesis generation, and as a tool for numerical experimentation. However, marine system models are increasingly used for prediction to support high-stakes decision-making. In such applications it is imperative that a rigorous model skill assessment is conducted so that the model's capabilities are tested and understood. Herein, we review several metrics and approaches useful to evaluate model skill. The definition of skill and the determination of the skill level necessary for a given application is context specific and no single metric is likely to reveal all aspects of model skill. Thus, we recommend the use of several metrics, in concert, to provide a more thorough appraisal. The routine application and presentation of rigorous skill assessment metrics will also serve the broader interests of the modeling community, ultimately resulting in improved forecasting abilities as well as helping us recognize our limitations.

摘要

海洋系统的耦合生物/物理模型有多种用途,包括信息综合、假设生成以及作为数值实验的工具。然而,海洋系统模型越来越多地用于预测,以支持高风险决策。在这类应用中,必须进行严格的模型技能评估,以便测试和了解模型的能力。在此,我们回顾了几种有助于评估模型技能的指标和方法。技能的定义以及给定应用所需技能水平的确定因具体情况而异,没有单一指标可能揭示模型技能的所有方面。因此,我们建议协同使用多种指标,以提供更全面的评估。严格的技能评估指标的常规应用和展示也将符合建模界的更广泛利益,最终提高预测能力,并帮助我们认识到自身的局限性。

相似文献

1
Skill Assessment for Coupled Biological/Physical Models of Marine Systems.
J Mar Syst. 2009 Feb 20;76(1-2):4-15. doi: 10.1016/j.jmarsys.2008.03.011. Epub 2008 May 24.
3
Ecosystem Model Skill Assessment. Yes We Can!
PLoS One. 2016 Jan 5;11(1):e0146467. doi: 10.1371/journal.pone.0146467. eCollection 2016.
4
Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations.
Conserv Physiol. 2016 Oct 4;4(1):cow038. doi: 10.1093/conphys/cow038. eCollection 2016.
5
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
6
The predictive skill of species distribution models for plankton in a changing climate.
Glob Chang Biol. 2016 Sep;22(9):3170-81. doi: 10.1111/gcb.13274. Epub 2016 Apr 4.
7
8
A discussion of calibration techniques for evaluating binary and categorical predictive models.
Prev Vet Med. 2018 Jan 1;149:107-114. doi: 10.1016/j.prevetmed.2017.11.018. Epub 2017 Nov 24.
9
Task-Level vs. Segment-Level Quantitative Metrics for Surgical Skill Assessment.
J Surg Educ. 2016 May-Jun;73(3):482-9. doi: 10.1016/j.jsurg.2015.11.009. Epub 2016 Feb 16.
10
Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.
Environ Mol Mutagen. 2017 Jun;58(5):264-283. doi: 10.1002/em.22045. Epub 2016 Sep 21.

引用本文的文献

5
The Transformation and Export of Organic Carbon Across an Arctic River-Delta-Ocean Continuum.
J Geophys Res Biogeosci. 2022 Dec;127(12):e2022JG007139. doi: 10.1029/2022JG007139. Epub 2022 Dec 12.
10

本文引用的文献

2
Similarity indices for spatial ecological data.
Biometrics. 2001 Jun;57(2):495-501. doi: 10.1111/j.0006-341x.2001.00495.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验