Skipetrov S E
Laboratoire de Physique et Modélisation des Milieux Condensés, Université Joseph Fourier, Maison des Magistères-CNRS, Bôite Postale 166, 38042 Grenoble 9, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 2):056614. doi: 10.1103/PhysRevE.63.056614. Epub 2001 Apr 25.
We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the system "coherent wave + nonlinear disordered medium." The feedback is provided by the multiple scattering. The development of instability is independent of the sign of nonlinearity.
我们考虑标量波在具有克尔型弱非线性的无序介质中的多重散射。为计算散射波的时间自相关函数而发展的微扰理论,在短相关时间时失效。自洽计算表明,对于超过某一阈值的非线性,即使在散射体不运动的情况下,多重散射散斑图案也会变得不稳定并呈现出自发涨落。这种不稳定性是由于“相干波 + 非线性无序介质”系统中的分布式反馈所致。该反馈由多重散射提供。不稳定性的发展与非线性的符号无关。