Giese A, Kretzschmar H A
Institute of Neuropathology, Ludwig-Maximilians-Universität, Marchioninistr. 17, 81377 München, Germany.
Curr Top Microbiol Immunol. 2001;253:203-17. doi: 10.1007/978-3-662-10356-2_10.
Prion diseases are characterized by the accumulation of a specific disease-associated isoform of the prion protein (PrP), termed PrPSc, which is the main, if not the only, component of the infectious agent termed prion. PrPSc is derived by an autocatalytic post-translational process involving conformational changes from the normal host-encoded isoform of the prion protein, termed PrPC. PrPC is a copper-binding glycoprotein attached to the cell membrane of neurons and other cells by means of a GPI anchor. The pattern of neurodegeneration differs between variants of prion disease and is related to the pattern of PrPSc deposition and differences in susceptibility of different cell types to the disease process. The pattern of PrPSc deposition depends on the strain of the agent and the PrP genotype of the host. Strain properties of prions appear to be related to different pathological conformations of PrPSc. Neuronal cell death is a salient feature in the pathology of prion diseases. Histological and electron microscopical studies have shown that cell death in prion disease occurs by apoptosis. Apoptosis of neuronal cells can also be induced in vitro by exposure to PrPSc or a neurotoxic peptide fragment corresponding to amino acids 106-126 of human prion protein (PrP106-126). Both in vitro and in vivo, the toxicity of PrPSc and PrP fragments appears to depend on neuronal expression of PrPC and on microglial activation. Activated microglial cells release pro-inflammatory cytokines and reactive oxygen species. Cell culture experiments suggest an important role of microglia-mediated oxidative stress in the induction of neuronal cell death. Only limited data are available on direct effects of PrPSc on neuronal cells. Potential effects include increased formation of an aberrant transmembrane form of PrP, termed CtmPrP, and changes in plasma membrane properties. In addition to direct and indirect toxic effects of PrPSc, a loss of function of PrPC may contribute to neuronal cell death. Potential mechanisms include disturbances in cerebral copper metabolism and antioxidative defense mechanisms. A better understanding of the pathogenesis of neuronal cell death in prion diseases may also have important therapeutic implications in the future.
朊病毒疾病的特征是一种特定的、与疾病相关的朊病毒蛋白(PrP)异构体(称为PrPSc)的积累,PrPSc是被称为朊病毒的感染因子的主要成分(即便不是唯一成分)。PrPSc是通过一个自催化的翻译后过程产生的,该过程涉及正常宿主编码的朊病毒蛋白异构体(称为PrPC)的构象变化。PrPC是一种铜结合糖蛋白,通过糖基磷脂酰肌醇(GPI)锚定附着于神经元和其他细胞的细胞膜上。朊病毒疾病不同变体的神经退行性变模式有所不同,且与PrPSc沉积模式以及不同细胞类型对疾病进程的易感性差异有关。PrPSc的沉积模式取决于病原体的毒株以及宿主的PrP基因型。朊病毒的毒株特性似乎与PrPSc的不同病理构象有关。神经元细胞死亡是朊病毒疾病病理学的一个显著特征。组织学和电子显微镜研究表明,朊病毒疾病中的细胞死亡是通过凋亡发生的。体外暴露于PrPSc或与人朊病毒蛋白106 - 126位氨基酸对应的神经毒性肽片段(PrP106 - 126)也可诱导神经元细胞凋亡。在体外和体内,PrPSc和PrP片段的毒性似乎都取决于PrPC的神经元表达以及小胶质细胞的激活。激活的小胶质细胞会释放促炎细胞因子和活性氧。细胞培养实验表明小胶质细胞介导的氧化应激在诱导神经元细胞死亡中起重要作用。关于PrPSc对神经元细胞的直接作用,仅有有限的数据。潜在影响包括异常跨膜形式的PrP(称为CtmPrP)形成增加以及质膜特性改变。除了PrPSc的直接和间接毒性作用外,PrPC功能丧失可能也会导致神经元细胞死亡。潜在机制包括脑铜代谢和抗氧化防御机制紊乱。更好地理解朊病毒疾病中神经元细胞死亡的发病机制可能在未来也具有重要的治疗意义。