Frame S, Cohen P, Biondi R M
Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, United Kingdom.
Mol Cell. 2001 Jun;7(6):1321-7. doi: 10.1016/s1097-2765(01)00253-2.
The inhibition of GSK3 is required for the stimulation of glycogen and protein synthesis by insulin and the specification of cell fate during development. Here, we demonstrate that the insulin-induced inhibition of GSK3 and its unique substrate specificity are explained by the existence of a phosphate binding site in which Arg-96 is critical. Thus, mutation of Arg-96 abolishes the phosphorylation of "primed" glycogen synthase as well as inhibition by PKB-mediated phosphorylation of Ser-9. Hence, the phosphorylated N terminus acts as a pseudosubstrate, occupying the same phosphate binding site used by primed substrates. Significantly, this mutation does not affect phosphorylation of "nonprimed" substrates in the Wnt-signaling pathway (Axin and beta-catenin), suggesting new approaches to design more selective GSK3 inhibitors for the treatment of diabetes.
胰岛素刺激糖原和蛋白质合成以及在发育过程中确定细胞命运需要抑制糖原合成酶激酶3(GSK3)。在此,我们证明胰岛素诱导的GSK3抑制及其独特的底物特异性可由一个磷酸结合位点的存在来解释,其中精氨酸-96至关重要。因此,精氨酸-96的突变消除了“引发的”糖原合酶的磷酸化以及蛋白激酶B(PKB)介导的丝氨酸-9磷酸化所导致的抑制作用。因此,磷酸化的N末端充当假底物,占据引发底物所使用的相同磷酸结合位点。值得注意的是,这种突变并不影响Wnt信号通路中“未引发的”底物(轴抑制蛋白和β-连环蛋白)的磷酸化,这为设计更具选择性的GSK3抑制剂用于治疗糖尿病提供了新方法。