Suppr超能文献

赖氨酸188位点的替换将蛋白酶体由REGγ激活的模式转变为REGα和REGβ激活的模式。

Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta.

作者信息

Li J, Gao X, Ortega J, Nazif T, Joss L, Bogyo M, Steven A C, Rechsteiner M

机构信息

Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132-0001, USA.

出版信息

EMBO J. 2001 Jul 2;20(13):3359-69. doi: 10.1093/emboj/20.13.3359.

Abstract

11S REGs (PA28s) are multimeric rings that bind proteasomes and stimulate peptide hydrolysis. Whereas REGalpha activates proteasomal hydrolysis of peptides with hydrophobic, acidic or basic residues in the P1 position, REGgamma only activates cleavage after basic residues. We have isolated REGgamma mutants capable of activating the hydrolysis of fluorogenic peptides diagnostic for all three active proteasome beta subunits. The most robust REGgamma specificity mutants involve substitution of Glu or Asp for Lys188. REGgamma(K188E/D) variants are virtually identical to REGalpha in proteasome activation but assemble into less stable heptamers/hexamers. Based on the REGalpha crystal structure, Lys188 of REGgamma faces the aqueous channel through the heptamer, raising the possibility that REG channels function as substrate-selective gates. However, covalent modification of proteasome chymotrypsin-like subunits by 125I-YL3-VS demonstrates that REGgamma(K188E)'s activation of all three proteasome active sites is not due to relaxed gating. We propose that decreased stability of REGgamma(K188E) heptamers allows them to change conformation upon proteasome binding, thus relieving inhibition of the CT and PGPH sites normally imposed by the wild-type REGgamma molecule.

摘要

11S调节因子(PA28)是与蛋白酶体结合并刺激肽水解的多聚体环。REGα激活蛋白酶体对P1位置带有疏水、酸性或碱性残基的肽的水解,而REGγ仅激活碱性残基后的切割。我们分离出了能够激活对所有三种活性蛋白酶体β亚基具有诊断作用的荧光肽水解的REGγ突变体。最有效的REGγ特异性突变体涉及用Glu或Asp取代Lys188。REGγ(K188E/D)变体在蛋白酶体激活方面与REGα几乎相同,但组装成的七聚体/六聚体稳定性较低。基于REGα晶体结构,REGγ的Lys188面向穿过七聚体的水通道,这增加了REG通道作为底物选择性门控发挥作用的可能性。然而,125I-YL3-VS对蛋白酶体胰凝乳蛋白酶样亚基的共价修饰表明,REGγ(K188E)对所有三个蛋白酶体活性位点的激活并非由于门控松弛。我们提出,REGγ(K188E)七聚体稳定性的降低使其在与蛋白酶体结合时能够改变构象,从而解除野生型REGγ分子通常对CT和PGPH位点的抑制。

相似文献

2
Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators.
J Biol Chem. 1997 Oct 10;272(41):25483-92. doi: 10.1074/jbc.272.41.25483.
4
Proteasome activation by REG molecules lacking homolog-specific inserts.
J Biol Chem. 1998 Apr 17;273(16):9501-9. doi: 10.1074/jbc.273.16.9501.
5
Identification of an activation region in the proteasome activator REGalpha.
Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2807-11. doi: 10.1073/pnas.95.6.2807.
6
Structure of the proteasome activator REGalpha (PA28alpha).
Nature. 1997 Dec 11;390(6660):639-43. doi: 10.1038/37670.
10
Properties of the nuclear proteasome activator PA28gamma (REGgamma).
Arch Biochem Biophys. 2000 Nov 15;383(2):265-71. doi: 10.1006/abbi.2000.2086.

引用本文的文献

1
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis.
Biomolecules. 2025 Jun 16;15(6):880. doi: 10.3390/biom15060880.
3
PA28γ: New Insights on an Ancient Proteasome Activator.
Biomolecules. 2021 Feb 5;11(2):228. doi: 10.3390/biom11020228.
4
CD8+ T Cell Co-Expressed Genes Correlate With Clinical Phenotype and Microenvironments of Urothelial Cancer.
Front Oncol. 2020 Nov 19;10:553399. doi: 10.3389/fonc.2020.553399. eCollection 2020.
5
Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies.
FEBS J. 2021 Sep;288(18):5231-5251. doi: 10.1111/febs.15638. Epub 2020 Dec 11.
6
SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice.
EMBO J. 2020 Sep 15;39(18):e104365. doi: 10.15252/embj.2019104365. Epub 2020 Jul 21.
7
Exploring long-range cooperativity in the 20S proteasome core particle from using methyl-TROSY-based NMR.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5298-5309. doi: 10.1073/pnas.1920770117. Epub 2020 Feb 24.
9
Proteome-wide modulation of degradation dynamics in response to growth arrest.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10329-E10338. doi: 10.1073/pnas.1710238114. Epub 2017 Nov 13.

本文引用的文献

1
Molecular dissection of the 11S REG (PA28) proteasome activators.
Biochimie. 2001 Mar-Apr;83(3-4):373-83. doi: 10.1016/s0300-9084(01)01236-6.
2
Lack of proteasome active site allostery as revealed by subunit-specific inhibitors.
Mol Cell. 2001 Feb;7(2):411-20. doi: 10.1016/s1097-2765(01)00188-5.
3
Structural basis for the activation of 20S proteasomes by 11S regulators.
Nature. 2000 Nov 2;408(6808):115-20. doi: 10.1038/35040607.
4
A gated channel into the proteasome core particle.
Nat Struct Biol. 2000 Nov;7(11):1062-7. doi: 10.1038/80992.
5
Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28.
Eur J Biochem. 2000 Oct;267(20):6221-30. doi: 10.1046/j.1432-1327.2000.01706.x.
6
The 26S proteasome: a molecular machine designed for controlled proteolysis.
Annu Rev Biochem. 1999;68:1015-68. doi: 10.1146/annurev.biochem.68.1.1015.
8
Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome.
J Biol Chem. 2000 Jul 21;275(29):22056-63. doi: 10.1074/jbc.M002513200.
9
The proteasome.
Annu Rev Biophys Biomol Struct. 1999;28:295-317. doi: 10.1146/annurev.biophys.28.1.295.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验