Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S1A8, Canada;
Department of Biochemistry, The University of Toronto, Toronto, ON M5S1A8, Canada.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5298-5309. doi: 10.1073/pnas.1920770117. Epub 2020 Feb 24.
The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high-molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called "hybrid" proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.
20S 核心颗粒(CP)蛋白酶体是一种分子组装体,可催化错误折叠的蛋白质或不再需要发挥功能的蛋白质的降解。它由四个堆叠的七聚体环组成,形成一个桶状结构,将蛋白水解酶的活性位点封闭在其内腔中。蛋白酶体的功能受到来自α环末端的门控以及调节颗粒(RP)与桶的一端或两端结合的调节。CP 是动态的,具有广泛的变构途径,从分子的一端延伸到其中心的催化位点。在这里,我们使用基于甲基横向弛豫优化光谱学(TROSY)的 NMR,优化了用于研究高分子量复合物的方法,以评估该途径是否延伸到分子的整个 150 Å 长度。通过利用多种不同的标记方案,可以区分分子的两半,从而可以在桶的远端评估 11S RP 结合或在桶的一端引入门控或变构途径突变的影响。我们的结果表明,尽管 11S 结合和关键突变的引入在变构上影响 CP 的每一半,但它们不会进一步偶联分子的两端。这可能对所谓的“杂交”蛋白酶体的功能有影响,其中 CP 的每一端都与不同的调节剂结合,允许 CP 同时对两个 RP 做出反应。所提出的方法学引入了一种用于剖析同型寡聚分子机器中通讯途径的一般 NMR 策略。