Suppr超能文献

利用基于甲基-TROSY 的 NMR 研究 20S 蛋白酶体核心颗粒中的远程协同作用。

Exploring long-range cooperativity in the 20S proteasome core particle from using methyl-TROSY-based NMR.

机构信息

Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S1A8, Canada;

Department of Biochemistry, The University of Toronto, Toronto, ON M5S1A8, Canada.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5298-5309. doi: 10.1073/pnas.1920770117. Epub 2020 Feb 24.

Abstract

The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high-molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called "hybrid" proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.

摘要

20S 核心颗粒(CP)蛋白酶体是一种分子组装体,可催化错误折叠的蛋白质或不再需要发挥功能的蛋白质的降解。它由四个堆叠的七聚体环组成,形成一个桶状结构,将蛋白水解酶的活性位点封闭在其内腔中。蛋白酶体的功能受到来自α环末端的门控以及调节颗粒(RP)与桶的一端或两端结合的调节。CP 是动态的,具有广泛的变构途径,从分子的一端延伸到其中心的催化位点。在这里,我们使用基于甲基横向弛豫优化光谱学(TROSY)的 NMR,优化了用于研究高分子量复合物的方法,以评估该途径是否延伸到分子的整个 150 Å 长度。通过利用多种不同的标记方案,可以区分分子的两半,从而可以在桶的远端评估 11S RP 结合或在桶的一端引入门控或变构途径突变的影响。我们的结果表明,尽管 11S 结合和关键突变的引入在变构上影响 CP 的每一半,但它们不会进一步偶联分子的两端。这可能对所谓的“杂交”蛋白酶体的功能有影响,其中 CP 的每一端都与不同的调节剂结合,允许 CP 同时对两个 RP 做出反应。所提出的方法学引入了一种用于剖析同型寡聚分子机器中通讯途径的一般 NMR 策略。

相似文献

1
Exploring long-range cooperativity in the 20S proteasome core particle from using methyl-TROSY-based NMR.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5298-5309. doi: 10.1073/pnas.1920770117. Epub 2020 Feb 24.
2
Probing the cooperativity of proteasome core particle gating by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9846-E9854. doi: 10.1073/pnas.1712297114. Epub 2017 Oct 30.
3
Proteasome allostery as a population shift between interchanging conformers.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3454-62. doi: 10.1073/pnas.1213640109. Epub 2012 Nov 12.
4
Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR.
Science. 2010 Apr 2;328(5974):98-102. doi: 10.1126/science.1184991.
5
Understanding the mechanism of proteasome 20S core particle gating.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5532-7. doi: 10.1073/pnas.1322079111. Epub 2014 Mar 31.
6
Crystallization and preliminary X-ray analysis of the Thermoplasma acidophilum 20S proteasome in complex with protein substrates.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Oct 1;64(Pt 10):899-902. doi: 10.1107/S1744309108026791. Epub 2008 Sep 30.
7
TROSY-based NMR evidence for a novel class of 20S proteasome inhibitors.
Biochemistry. 2008 Jul 1;47(26):6727-34. doi: 10.1021/bi8005913. Epub 2008 Jun 10.
8
Allosteric coupling between α-rings of the 20S proteasome.
Nat Commun. 2020 Sep 11;11(1):4580. doi: 10.1038/s41467-020-18415-7.
9
Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine.
Science. 2012 Aug 17;337(6096):843-6. doi: 10.1126/science.1224352. Epub 2012 Jul 26.
10
The proteasome antechamber maintains substrates in an unfolded state.
Nature. 2010 Oct 14;467(7317):868-71. doi: 10.1038/nature09444.

引用本文的文献

1
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis.
Biomolecules. 2025 Jun 16;15(6):880. doi: 10.3390/biom15060880.
2
Structural basis for allosteric modulation of M. tuberculosis proteasome core particle.
Nat Commun. 2025 Apr 1;16(1):3138. doi: 10.1038/s41467-025-58430-0.
3
gen. nov., sp. nov., an extremely acidophilic organotrophic member of the order .
Int J Syst Evol Microbiol. 2024 Aug;74(8). doi: 10.1099/ijsem.0.006499.
4
Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family.
Nat Commun. 2023 May 30;14(1):3126. doi: 10.1038/s41467-023-38404-w.
6
Allostery Modulates Interactions between Proteasome Core Particles and Regulatory Particles.
Biomolecules. 2022 May 30;12(6):764. doi: 10.3390/biom12060764.
7
A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets.
Front Aging Neurosci. 2022 Apr 6;14:854380. doi: 10.3389/fnagi.2022.854380. eCollection 2022.
8
Design and engineering of allosteric communications in proteins.
Curr Opin Struct Biol. 2022 Apr;73:102334. doi: 10.1016/j.sbi.2022.102334. Epub 2022 Feb 15.
9
Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy.
Annu Rev Biophys. 2022 May 9;51:223-246. doi: 10.1146/annurev-biophys-090921-120150. Epub 2022 Jan 19.

本文引用的文献

1
Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes.
Mol Cell. 2019 Oct 3;76(1):138-147.e5. doi: 10.1016/j.molcel.2019.07.014. Epub 2019 Aug 28.
2
How the 26S Proteasome Degrades Ubiquitinated Proteins in the Cell.
Biomolecules. 2019 Aug 22;9(9):395. doi: 10.3390/biom9090395.
3
The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis.
Nat Microbiol. 2019 Nov;4(11):1990-2000. doi: 10.1038/s41564-019-0524-4. Epub 2019 Aug 5.
4
Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation.
Front Mol Biosci. 2019 Jun 7;6:40. doi: 10.3389/fmolb.2019.00040. eCollection 2019.
5
Cooperative subunit dynamics modulate p97 function.
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):158-167. doi: 10.1073/pnas.1815495116. Epub 2018 Dec 24.
6
Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):534-539. doi: 10.1073/pnas.1817752116. Epub 2018 Dec 17.
7
Probing the cooperativity of proteasome core particle gating by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9846-E9854. doi: 10.1073/pnas.1712297114. Epub 2017 Oct 30.
8
An atomic structure of the human 26S proteasome.
Nat Struct Mol Biol. 2016 Sep;23(9):778-85. doi: 10.1038/nsmb.3273. Epub 2016 Jul 18.
9
Structure of the human 26S proteasome at a resolution of 3.9 Å.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7816-21. doi: 10.1073/pnas.1608050113. Epub 2016 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验