Suppr超能文献

诊断相关组(DRGs)如何损害学术医疗系统。

How DRGs hurt academic health systems.

作者信息

Taheri P A, Butz D A, Dechert R, Greenfield L J

机构信息

Division of Trauma Burn and Emergency Surgery, University of Michigan Health System, Ann Arbor, USA.

出版信息

J Am Coll Surg. 2001 Jul;193(1):1-8; discussion 8-11. doi: 10.1016/s1072-7515(01)00870-5.

Abstract

BACKGROUND

Academic health centers continue their mission of clinical care, education, and research. This mission predisposes them to accept patients regardless of their individual clinical variation and financial risk. The purpose of this study is to assess the variation in costs and the attendant financial risk associated with these patients. In addition, we propose a new reimbursement methodology for academic health center high-end DRGs that better aligns financial risks.

STUDY DESIGN

We reviewed clinical and financial data from the University of Michigan data warehouse for FY1999 (n = 39,804). The diagnosis-related groups were classified by volume (group 1, low volume to group 4, high volume). The coefficient of variation for total cost per admission was then calculated for each DRG classification. A regression analysis was also performed to assess how costs in the first 3 days estimated total costs. A hybrid methodology to estimate costs was then determined and its accuracy benchmarked against actual Medicare and Blue Cross reimbursements.

RESULTS

Low-volume DRGs (< 75 annual admissions) had the highest coefficient of variation relative to each of the three other DRG classifications (moderate to high volume, groups 2, 3, and 4). The regression analysis accurately estimated costs (within 25% of actual costs) in 64.7% of patients with a length of stay > or = 4 days (n = 16,287). This regression fared well compared with actual FY 1999 DRG-based Medicare and Blue Cross reimbursements (n = 9,085 with length of stay > or = 4 days), which accurately reimbursed the University of Michigan Health System in only 43.9% of cases.

CONCLUSIONS

Academic health centers receive a disproportionate number of admissions to low-volume, high-variation DRGs. This clinical variation translates into financial risk. Traditional risk management strategies are difficult to use in health care settings. The application of our proposed reimbursement methodology better distributes risk between payers and providers, and reduces adverse selection and incentive problems ("moral hazard").

摘要

背景

学术医疗中心继续履行其临床护理、教育和研究的使命。这一使命使它们倾向于接纳患者,而不论患者个体的临床差异和财务风险如何。本研究的目的是评估这些患者的成本差异以及随之而来的财务风险。此外,我们为学术医疗中心的高端诊断相关分组(DRG)提出了一种新的报销方法,该方法能更好地平衡财务风险。

研究设计

我们回顾了密歇根大学数据仓库1999财年的临床和财务数据(n = 39,804)。诊断相关分组按数量分类(第1组,低数量至第4组,高数量)。然后计算每个DRG分类的每次住院总成本的变异系数。还进行了回归分析,以评估入院前3天的成本如何估算总成本。然后确定了一种混合成本估算方法,并将其准确性与医疗保险和蓝十字的实际报销情况进行基准对比。

结果

低数量DRG(每年入院少于75例)相对于其他三个DRG分类(中至高数量,第2、3和4组)具有最高的变异系数。回归分析在64.7%的住院时间≥4天的患者(n = 16,287)中准确估算了成本(在实际成本的25%以内)。与1999财年基于DRG的医疗保险和蓝十字的实际报销情况(n = 9,085,住院时间≥4天)相比,该回归表现良好,医疗保险和蓝十字仅在43.9%的病例中准确报销了密歇根大学医疗系统。

结论

学术医疗中心接收了不成比例数量的低数量、高变异DRG的入院患者。这种临床差异转化为财务风险。传统的风险管理策略在医疗环境中难以应用。我们提出的报销方法的应用能更好地在支付方和提供方之间分配风险,并减少逆向选择和激励问题(“道德风险”)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验