Veldhuis J D, Bidlingmaier M, Anderson S M, Wu Z, Strasburger C J
Division of Endocrinology, Department of Internal Medicine, General Clinical Research Center, Center for Biomathematical Technology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0202, USA.
J Clin Endocrinol Metab. 2001 Jul;86(7):3304-10. doi: 10.1210/jcem.86.7.7656.
The present clinical study implements a novel interventional strategy of short-term profound and selective blockade of GH receptors to reduce plasma insulin-like growth factor I (IGF-I) concentrations reversibly in healthy eumetabolic adults. Thereby, we examine the feedback role of systemic IGF-I on GH secretion without introducing the complex metabolic disarray that can otherwise accompany secondary IGF-I deprivation. To this end, we sampled blood at 10-min intervals for 10 h overnight in 8 men (aged 19-46 yr) and 4 women (aged 19-39 yr) to quantitate endogenous GH secretion and half-life 72 h after the prospective, randomly ordered, double blind, and within-subject cross-over administration of pegvisomant (1 mg/kg) or saline (0.5 mL) sc. Pegvisomant is an oligopegylated recombinant human GH peptide mutated to antagonize GH receptor-dependent signaling. Statistical analyses of paired plasma IGF-I concentrations and deconvolution-based quantitation of pulsatile GH secretion revealed that GH receptor blockade 1) suppressed fasting total IGF-I concentrations by 31%, viz. from (mean +/- SEM) 276 +/- 42 (placebo) to 190 +/- 20 microg/L (pegvisomant; P = 0.006) 84 h after drug injection; 2) increased the 10-h mean serum GH concentration by 71% from 1.4 +/- 0.33 (placebo) to 2.4 +/- 0.58 (pegvisomant; P = 0.024); 3) augmented the amplitude of underlying GH secretory bursts by 2.1-fold (i.e. from 0.13 +/- 0.032 to 0.27 +/- 0.076 microg/L.min; P = 0.0088); and 4) elevated the basal/nonpulsatile rate of GH secretion by 2.5-fold (from 2.3 +/- 0.77 to 5.07 +/- 1.8 microg/L.10 h; P = 0.022). The rise in the amplitude of GH secretory bursts correlated with the fall in plasma IGF-I concentrations (r = 0.603; P = 0.038). In contrast, IGF-I depletion did not alter GH secretory pulse frequency, half-duration, interpulse interval, percentage of pulsatile GH release, or half-life of endogenous GH. In summary, selective short-term reduction of systemic IGF-I concentrations in healthy eumetabolic adults drives GH secretion via the specific bipartite neuroregulatory mechanism of amplified GH secretory burst amplitude and elevated basal/nonpulsatile GH release. Endogenous GH half-life and frequency-related features of pulsatile GH secretion are not measurably affected, thus identifying a highly distinctive mode of IGF-I feedback-dependent control of GH output. As the increment in GH secretory burst amplitude correlated with the decrement in plasma IGF-I concentrations, we infer that variations in circulating IGF-I availability within the adult midphysiological range can influence pulsatile and basal GH production by way of negative feedback. Based on data in experimental animals, we speculate that the negative feedback actions of systemic IGF-I on GH secretion are mediated via increased hypothalamic somatostatin release, decreased GHRH (or GH-releasing peptide) secretion, and/or suppressed pituitary GH biosynthesis.
本临床研究实施了一种新型干预策略,即对健康的代谢正常成年人进行短期、深度且选择性的生长激素(GH)受体阻断,以可逆地降低血浆胰岛素样生长因子I(IGF-I)浓度。借此,我们在不引入因继发性IGF-I缺乏可能伴随的复杂代谢紊乱的情况下,研究全身IGF-I对GH分泌的反馈作用。为此,我们对8名男性(年龄19 - 46岁)和4名女性(年龄19 - 39岁)进行了研究,在夜间连续10小时每隔10分钟采集一次血液样本,以定量内源性GH分泌及在皮下前瞻性、随机排序、双盲、受试者自身交叉给予培维索孟(1 mg/kg)或生理盐水(0.5 mL)72小时后的半衰期。培维索孟是一种寡聚乙二醇化的重组人生长激素肽,经突变后可拮抗GH受体依赖性信号传导。对配对的血浆IGF-I浓度进行统计分析以及基于反卷积的搏动性GH分泌定量分析显示,GH受体阻断:1)在药物注射84小时后,使空腹总IGF-I浓度降低了31%,即从(均值±标准误)276±42(安慰剂组)降至190±20μg/L(培维索孟组;P = 0.006);2)使10小时平均血清GH浓度从1.4±0.33(安慰剂组)升高71%至2.4±0.58(培维索孟组;P = 0.024);3)使潜在GH分泌脉冲的幅度增大2.1倍(即从0.13±0.032增至0.27±0.076μg/L·分钟;P = 0.0088);4)使GH分泌的基础/非搏动性速率提高2.5倍(从2.3±0.77增至5.07±1.8μg/L·10小时;P = 0.022)。GH分泌脉冲幅度的升高与血浆IGF-I浓度的降低相关(r = 0.603;P = 0.038)。相比之下,IGF-I耗竭并未改变GH分泌脉冲频率、半持续时间、脉冲间期、搏动性GH释放百分比或内源性GH的半衰期。总之,在健康的代谢正常成年人中,选择性短期降低全身IGF-I浓度通过放大GH分泌脉冲幅度和升高基础/非搏动性GH释放这一特定的双部分神经调节机制来驱动GH分泌。内源性GH半衰期以及搏动性GH分泌的频率相关特征未受到可测量的影响,从而确定了一种高度独特的IGF-I反馈依赖性GH输出控制模式。由于GH分泌脉冲幅度的增加与血浆IGF-I浓度的降低相关,我们推断在成年生理范围内循环IGF-I可用性的变化可通过负反馈影响搏动性和基础GH的产生。基于实验动物的数据,我们推测全身IGF-I对GH分泌的负反馈作用是通过下丘脑生长抑素释放增加、生长激素释放激素(GHRH,或生长激素释放肽)分泌减少和/或垂体GH生物合成受抑制来介导的。