Suppr超能文献

14C-百菌清在热带土壤中的转化途径。

Transformation pathways of 14c-chlorothalonil in tropical soils.

作者信息

Regitano J B, Tornisielo V L, Lavorenti A, Pacovsky R S

机构信息

Departamento de Ecotoxicologia, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Caixa Postal 96, CEP: 13400-970, Piracicaba, São Paulo, Brazil.

出版信息

Arch Environ Contam Toxicol. 2001 Apr;40(3):295-302. doi: 10.1007/s002440010175.

Abstract

Chlorothalonil (CTN) is a chlorinated wide-spectrum fungicide, heavily and widely applied throughout the world. This study was undertaken to directly evaluate the rates and forms of 14C-labeled CTN dissipation in three acid Brazilian soils (Typic Humaquept [GH], Typic Quartzipsamment [AQ], and Typic Hapludox [LE]). Mineralization was not the major metabolic pathway of CTN-degrading microorganisms. However, CTN dissipation was fast in all soils and was mainly due to biodegradation (responsible for 50%, 54%, and 73% of 14C-CTN dissipation in the GH, LE, and AQ soils, respectively), as well as to formation of soil-bound 14C residues (responsible for 46%, 34%, and 18% of 14C-CTN dissipation in the GH, LE, and AQ soils, respectively). Most soil-bound 14C residues were formed in the first day, but aging also contributed to the formation of less reversible forms of CTN-soil complexes. In these acid soils, the most abundant metabolite formed from CTN degradation was 3-carbamyl-2,4,5-trichlorobenzoic acid. A significant fraction of the CTN that had been assumed to be rapidly degradable in soils in previous reports has turned out to be soil-bound residues. Although bioavailability of any compound is reduced when soil complexes are formed, further research is needed to evaluate accumulation and availability of CTN soil-bound residues over long-term applications, and the consequent detrimental effects on the environment and on soil quality and fertility.

摘要

百菌清(CTN)是一种含氯广谱杀菌剂,在全球范围内大量广泛使用。本研究旨在直接评估14C标记的百菌清在巴西三种酸性土壤(典型腐殖潮湿新成土[GH]、典型石英砂新成土[AQ]和典型强发育氧化土[LE])中的消散速率和形式。矿化作用并非百菌清降解微生物的主要代谢途径。然而,百菌清在所有土壤中消散迅速,主要归因于生物降解(分别占GH、LE和AQ土壤中14C-百菌清消散的50%、54%和73%)以及土壤结合态14C残留物的形成(分别占GH、LE和AQ土壤中14C-百菌清消散的46%、34%和18%)。大多数土壤结合态14C残留物在第一天形成,但老化也有助于形成百菌清-土壤复合物中较难逆转的形式。在这些酸性土壤中,百菌清降解形成的最丰富代谢产物是3-氨甲酰基-2,4,5-三氯苯甲酸。先前报告中认为在土壤中可快速降解的很大一部分百菌清结果是土壤结合态残留物。尽管形成土壤复合物时任何化合物的生物有效性都会降低,但仍需要进一步研究来评估长期施用百菌清土壤结合态残留物的积累和有效性,以及随之对环境、土壤质量和肥力产生的有害影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验