Krasteva V, Trendafilova E, Cansell A, Daskalov I
Centre of Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria.
J Med Eng Technol. 2001 Mar-Apr;25(2):68-73. doi: 10.1080/03091900110038384.
Various electrical pulses have been used for defibrillation. The monophasic damped sinusoid waveform, initiated in 60 s, was adopted in virtually all defibrillators. Biphasic pulses were introduced recently, achieving success with less energy. A biphasic exponential waveform was modelled with 4 ms duration per phase with a balanced 3:1 ratio of the first to second phase peak voltages and implemented in a defibrillator. A version obtained by chopping the pulses with a 5 kHz frequency was also used. It was hypothesized that the modelled transmembrane voltage decay time is a parameter that could be associated with successful defibrillation. The results of cardioversion for two groups of patients with the 'classic' monophasic waveform and with the biphasic pulses were compared. The mean efficient energy with the damped sinusoid was 205 +/- 85 J, versus 88 +/- 43 J with the biphasic pulses, yielding a ratio of 2.32 (1.92 to 3.2 for fibrillation and flutter, respectively). An acceptable agreement between model data and clinical results was found. The transmembrane voltage decay time ratios for monophasic versus biphasic pulses was in the approximate range of 2.5 to 3.5.