Redon S, Bombard S, Elizondo-Riojas M A, Chottard J C
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris V, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France.
Biochemistry. 2001 Jul 24;40(29):8463-70. doi: 10.1021/bi001565a.
The telomeric sequence (T(2)G(4))(4) was platinated in aqueous solutions containing 50 mM LiClO(4), NaClO(4), or KClO(4). The identification of the guanines which reacted with Pt(NH(3))(3)(H(2)O) revealed that the same type of folding exists in the presence of the three cations and that the latter determine the relative stabilities of the G-quadruplex structures in the order K(+) > Na(+) >> Li(+). The tri-ammine complex yielded ca. 40--90% of adducts, mono- and poly-platinated, bound to 4 guanines out of the 16 guanines in the sequence, in the decreasing amounts G9 > G15 >> G3 > G21. The formation of these adducts was interpreted with a G-quadruplex structure obtained by restrained molecular dynamics (rMD) simulations which confirms the schematic model proposed by Williamson et al. [(1989) Cell 59, 871--880]. The bifunctional complexes cis- and trans-Pt(NH(3))(2)(H(2)O)(2) also first reacted with G9 and G15 and gave cross-linked adducts between two guanines, which did not exceed 5% each of the products formed. Both the cis and trans isomers formed a G3-G15 platinum chelate, and the second also formed bis-chelates at both ends of the G-quadruplex structure: G3-G15/G9-G21 and G3-G15/G9-G24. The rMD simulations showed that the cross-linking reactions by the trans complex can occur without disturbing the stacking of the three G-quartets.