Suppr超能文献

Transport of NH(3)/NH in oocytes expressing aquaporin-1.

作者信息

Nakhoul N L, Hering-Smith K S, Abdulnour-Nakhoul S M, Hamm L L

机构信息

Section of Nephrology, Department of Medicine, Tulane University School of Medicine, and Veterans Affairs Medical Center, New Orleans, Louisiana 70112, USA.

出版信息

Am J Physiol Renal Physiol. 2001 Aug;281(2):F255-63. doi: 10.1152/ajprenal.2001.281.2.F255.

Abstract

The aim of this study was to determine whether expressing aquaporin (AQP)-1 could affect transport of NH(3). Using ion-selective microelectrodes, the experiments were conducted on frog oocytes (cells characterized by low NH(3) permeability) expressing AQP1. In H(2)O-injected oocytes, exposure to NH(3)/NH (20 mM, pH 7.5) caused a sustained cell acidification and no initial increase in pH(i) (as expected from NH(3) influx), and the cell depolarized to near 0 mV. The absence of Na(+), the presence of Ba(2+), or raising bath pH (pH(B)) did not inhibit the magnitude of the pH(i) decrease or result in an initial increase in pH(i) when NH(3)/NH was added. However, after the cell was acidified (because of NH(3)/NH), raising pH(B) to 8.0 caused a slow increase in pH(i) but had no effect on membrane potential. The changes in pH(i) with raising pH(B) did not occur in the absence of NH(3)/NH. In AQP1 oocytes, exposure to NH(3)/NH usually resulted in little or no change in pH(i), and in the absence of Na(+) there was a small increase in pH(i) (the cell still depolarized to near 0 mV). However, after exposure to NH(3)/NH, raising pH(B) to 8.0 caused pH(i) to increase more than two times faster than in control oocytes. This increase in pH(i) is likely the result of increased NH(3) entry and not the result of NH transport. These results indicate that 1) the oocyte membrane, although highly permeable to NH, has a significant NH(3) permeability and 2) NH(3) permeability is enhanced by AQP1.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验