Nakhoul N L, Davis B A, Romero M F, Boron W F
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Am J Physiol. 1998 Feb;274(2):C543-8. doi: 10.1152/ajpcell.1998.274.2.C543.
It is generally accepted that gases such as CO2 cross cell membranes by dissolving in the membrane lipid. No role for channels or pores in gas transport has ever been demonstrated. Here we ask whether expression of the water channel aquaporin-1 (AQP1) enhances the CO2 permeability of Xenopus oocytes. We expressed AQP1 in Xenopus oocytes by injecting AQP1 cRNA, and we assessed CO2 permeability by using microelectrodes to monitor the changes in intracellular pH (pHi) produced by adding 1.5% CO2/10 mM HCO3- to (or removing it from) the extracellular solution. Oocytes normally have an undetectably low level of carbonic anhydrase (CA), which eliminates the CO2 hydration reaction as a rate-limiting step. We found that expressing AQP1 (vs. injecting water) had no measurable effect on the rate of CO2-induced pHi changes in such low-CA oocytes: adding CO2 caused pHi to fall at a mean initial rate of 11.3 x 10(-4) pH units/s in control oocytes and 13.3 x 10(-4) pH units/s in oocytes expressing AQP1. When we injected oocytes with water, and a few days later with CA, the CO2-induced pHi changes in these water/CA oocytes were more than fourfold faster than in water-injected oocytes (acidification rate, 53 x 10(-4) pH units/s). Ethoxzolamide (ETX; 10 microM), a membrane-permeant CA inhibitor, greatly slowed the pHi changes (16.5 x 10(-4) pH units/s). When we injected oocytes with AQP1 cRNA and then CA, the CO2-induced pHi changes in these AQP1/CA oocytes were approximately 40% faster than in the water/CA oocytes (75 x 10(-4) pH units/s), and ETX reduced the rates substantially (14.7 x 10(-4) pH units/s). Thus, in the presence of CA, AQP1 expression significantly increases the CO2 permeability of oocyte membranes. Possible explanations include 1) AQP1 expression alters the lipid composition of the cell membrane, 2) AQP1 expression causes overexpression of a native gas channel, and/or 3) AQP1 acts as a channel through which CO2 can permeate. Even if AQP1 should mediate a CO2 flux, it would remain to be determined whether this CO2 movement is quantitatively important.
人们普遍认为,诸如二氧化碳之类的气体是通过溶解于细胞膜脂质中来穿过细胞膜的。从未有证据表明通道或孔在气体运输中起作用。在此,我们探究水通道水通道蛋白-1(AQP1)的表达是否会增强非洲爪蟾卵母细胞的二氧化碳通透性。我们通过注射AQP1的互补RNA(cRNA)在非洲爪蟾卵母细胞中表达AQP1,并通过使用微电极监测向细胞外溶液中添加1.5%二氧化碳/10毫摩尔碳酸氢根(或从细胞外溶液中去除)所引起的细胞内pH值(pHi)变化来评估二氧化碳通透性。卵母细胞通常具有低到检测不到水平的碳酸酐酶(CA),这使得二氧化碳水合反应不会成为限速步骤。我们发现,在这种低CA的卵母细胞中,表达AQP1(与注射水相比)对二氧化碳诱导的pHi变化速率没有可测量的影响:添加二氧化碳时,对照卵母细胞中pHi以平均初始速率11.3×10⁻⁴pH单位/秒下降,而在表达AQP1的卵母细胞中为13.3×10⁻⁴pH单位/秒。当我们先向卵母细胞注射水,几天后再注射CA时,这些水/CA卵母细胞中二氧化碳诱导的pHi变化比注射水的卵母细胞快四倍多(酸化速率为53×10⁻⁴pH单位/秒)。乙氧唑胺(ETX;10微摩尔),一种可透过细胞膜的CA抑制剂,极大地减缓了pHi变化(16.5×10⁻⁴pH单位/秒)。当我们先向卵母细胞注射AQP1的cRNA然后再注射CA时,这些AQP1/CA卵母细胞中二氧化碳诱导的pHi变化比水/CA卵母细胞快约40%(75×10⁻⁴pH单位/秒),并且ETX显著降低了速率(14.7×10⁻⁴pH单位/秒)。因此,在有CA存在的情况下,AQP1的表达显著增加了卵母细胞膜的二氧化碳通透性。可能的解释包括:1)AQP1的表达改变了细胞膜的脂质组成;2)AQP1的表达导致天然气体通道的过表达;和/或3)AQP1充当了二氧化碳可以透过的通道。即使AQP1确实介导了二氧化碳通量,这种二氧化碳移动在数量上是否重要仍有待确定。