Braun B, Rock P B, Zamudio S, Wolfel G E, Mazzeo R S, Muza S R, Fulco C S, Moore L G, Butterfield G E
Geriatric Research, Education and Clinical Center, Veterans Affairs Health Care System, Stanford University School of Medicine, Palo Alto, California 94304, USA.
J Appl Physiol (1985). 2001 Aug;91(2):623-31. doi: 10.1152/jappl.2001.91.2.623.
After short-term exposure to high altitude (HA), men appear to be less sensitive to insulin than at sea level (SL). We hypothesized that the same would be true in women, that reduced insulin sensitivity would be directly related to the rise in plasma epinephrine concentrations at altitude, and that the addition of alpha-adrenergic blockade would potentiate the reduction. To test the hypotheses, 12 women consumed a high-carbohydrate meal at SL and after 16 h at simulated 4,300-m elevation (HA). Subjects were studied twice at each elevation: once with prazosin (Prz), an alpha(1)-adrenergic antagonist, and once with placebo (Pla). Mathematical models were used to assess insulin resistance based on fasting [homeostasis model assessment of insulin resistance (HOMA-IR)] and postprandial [composite model insulin sensitivity index (C-ISI)] glucose and insulin concentrations. Relative to SL-Pla (HOMA-IR: 1.86 +/- 0.35), insulin resistance was greater in HA-Pla (3.00 +/- 0.45; P < 0.05), SL-Prz (3.46 +/- 0.51; P < 0.01), and HA-Prz (2.82 +/- 0.43; P < 0.05). Insulin sensitivity was reduced in HA-Pla (C-ISI: 4.41 +/- 1.03; P < 0.01), SL-Prz (5.73 +/- 1.01; P < 0.05), and HA-Prz (4.18 +/- 0.99; P < 0.01) relative to SL-Pla (8.02 +/- 0.92). Plasma epinephrine was significantly elevated in HA-Pla (0.57 +/- 0.08 ng/ml; P < 0.01), SL-Prz (0.42 +/- 0.07; P < 0.05), and HA-Prz (0.82 +/- 0.07; P < 0.01) relative to SL-Pla (0.28 +/- 0.04), but correlations with HOMA-IR, HOMA-beta-cell function, and C-ISI were weak. In women, short-term exposure to simulated HA reduced insulin sensitivity compared with SL. The change does not appear to be directly mediated by a concurrent rise in plasma epinephrine concentrations.
短期暴露于高海拔环境(HA)后,男性似乎比在海平面(SL)时对胰岛素的敏感性更低。我们假设女性也会出现同样的情况,即胰岛素敏感性降低与海拔高度引起的血浆肾上腺素浓度升高直接相关,并且添加α-肾上腺素能阻滞剂会增强这种降低作用。为了验证这些假设,12名女性在海平面时进食了一顿高碳水化合物餐,并在模拟海拔4300米的环境(HA)中停留16小时后再次进食。在每个海拔高度对受试者进行了两次研究:一次使用哌唑嗪(Prz),一种α(1)-肾上腺素能拮抗剂,另一次使用安慰剂(Pla)。基于空腹[胰岛素抵抗稳态模型评估(HOMA-IR)]和餐后[综合模型胰岛素敏感性指数(C-ISI)]的血糖和胰岛素浓度,使用数学模型评估胰岛素抵抗。相对于海平面-安慰剂组(HOMA-IR:1.86±0.35),高海拔-安慰剂组(3.00±0.45;P<0.05)、海平面-哌唑嗪组(3.46±0.51;P<0.01)和高海拔-哌唑嗪组(2.82±0.43;P<0.05)的胰岛素抵抗更大。相对于海平面-安慰剂组(8.02±0.92),高海拔-安慰剂组(C-ISI:4.41±1.03;P<0.01)、海平面-哌唑嗪组(5.73±1.01;P<0.05)和高海拔-哌唑嗪组(4.18±0.99;P<0.01)的胰岛素敏感性降低。相对于海平面-安慰剂组(0.28±0.04),高海拔-安慰剂组(0.57±0.08 ng/ml;P<0.01)、海平面-哌唑嗪组(0.42±0.07;P<0.05)和高海拔-哌唑嗪组(有关血浆肾上腺素显著升高(P<0.01),但与HOMA-IR、HOMA-β细胞功能和C-ISI的相关性较弱。在女性中,与海平面相比,短期暴露于模拟高海拔环境会降低胰岛素敏感性。这种变化似乎不是由血浆肾上腺素浓度同时升高直接介导的。