Lu Z L, Sperling G
Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA.
Vision Res. 2001 Aug;41(18):2355-74. doi: 10.1016/s0042-6989(01)00106-7.
We compare two types of sampled motion stimuli: ordinary periodic displays with modulation amplitude m(o=e) that translate 90 degrees between successive frames and amplifier sandwich displays. In sandwich displays, even-numbered frames are of one type, odd-numbered frames are of the same or different type, and (1) both types have the same period, (2) translate in a consistent direction 90 degrees between frames, and (3) even frames have modulation amplitude m(e), odd frames have modulation amplitude m(o). In both first-order motion (van Santen, J.P.H. & Sperling, G. (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America A, 1, 451-73) and second-order motion (Werkhoven, P., Sperling, G., & Chubb, C. (1993). Motion perception between dissimilar gratings: a single channel theory. Vision Research, 33, 463-85) the motion strength of amplifier sandwich displays is proportional to the product m(o)m(e) for a wide range of m(e). By setting m(e) to a large value, an amplifier sandwich stimulus with a very small value of m(o) can still produce visible motion. The amplification factor is the ratio of two threshold modulation amplitudes: ordinary circumflexm(o=e) over amplified circumflexm(o), circumflexm(o=e)/circumflexm(o). We find amplification factors of up to about 8x. Light adaptation and contrast gain control in early visual processing distort the representations of visual stimuli so that inputs to subsequent perceptual processes contain undesired distortion products or 'impurities'. Motion amplification is used to measure and thence to reduce these unwanted components in a stimulus to a small fraction of their threshold. Such stimuli are certifiably pure in the sense that the residual impurity is less than a specified value. Six applications are considered: (1) removing (first-order) luminance contamination from moving (second-order) texture gratings; (2) removing luminance contamination from moving chromatic gratings to produce pure isoluminant gratings; (3) removing distortion products in luminance-modulated (first-order) gratings - by iterative application, all significant distortion products can be removed; (4) removing second-order texture contamination from third-order motion displays; (5) removing feature bias from third-order motion displays; (6) and the same general principles are applied to texture-slant discrimination in which x,y spatial coordinates replace the x,t motion coordinates. In all applicable domains, the amplification principle provides a powerful assay method for the precise measurement of very weak stimuli, and thereby a means of producing visual displays of certifiable purity.
调制幅度为m(o=e)的普通周期性显示,其在连续帧之间平移90度,以及放大器夹层显示。在夹层显示中,偶数帧为一种类型,奇数帧为相同或不同类型,并且(1)两种类型具有相同的周期,(2)在帧之间沿一致方向平移90度,(3)偶数帧具有调制幅度m(e),奇数帧具有调制幅度m(o)。在一阶运动(范·桑滕,J.P.H. & 斯佩林,G.(1984年)。人类运动感知的时间协方差模型。《美国光学学会杂志A》,1,451 - 73)和二阶运动(韦尔霍芬,P.,斯佩林,G.,& 查布,C.(1993年)。不同光栅之间的运动感知:单通道理论。《视觉研究》,33,463 - 85)中,对于广泛的m(e)范围,放大器夹层显示的运动强度与乘积m(o)m(e)成正比。通过将m(e)设置为较大值,具有非常小的m(o)值的放大器夹层刺激仍然可以产生可见运动。放大因子是两个阈值调制幅度的比值:普通的 circumflexm(o=e) 与放大后的 circumflexm(o) 的比值,即 circumflexm(o=e)/circumflexm(o)。我们发现放大因子高达约8倍。早期视觉处理中的光适应和对比度增益控制会扭曲视觉刺激的表示,从而使后续感知过程的输入包含不需要的失真产物或“杂质”。运动放大用于测量并因此将刺激中这些不需要的成分减少到其阈值的一小部分。这样的刺激在残余杂质小于指定值的意义上是可认证纯净的。考虑了六个应用:(1) 从移动的(二阶)纹理光栅中去除(一阶)亮度污染;(2) 从移动的彩色光栅中去除亮度污染以产生纯等亮度光栅;(3) 去除亮度调制(一阶)光栅中的失真产物 - 通过迭代应用,可以去除所有显著的失真产物;(4) 从三阶运动显示中去除二阶纹理污染;(5) 从三阶运动显示中去除特征偏差;(6) 并且相同的一般原则应用于纹理倾斜辨别,其中x、y空间坐标取代x、t运动坐标。在所有适用领域,放大原理为精确测量非常微弱的刺激提供了一种强大的分析方法,从而提供了一种产生可认证纯净视觉显示的手段。