Suppr超能文献

RecA和Rad51在DNA上形成的螺旋丝中的结构域结构与动力学。

Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA.

作者信息

Yu X, Jacobs S A, West S C, Ogawa T, Egelman E H

机构信息

Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Box 800733, Charlottesville, VA 22908, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8419-24. doi: 10.1073/pnas.111005398.

Abstract

Both the bacterial RecA protein and the eukaryotic Rad51 protein form helical nucleoprotein filaments on DNA that catalyze strand transfer between two homologous DNA molecules. However, only the ATP-binding cores of these proteins have been conserved, and this same core is also found within helicases and the F1-ATPase. The C-terminal domain of the RecA protein forms lobes within the helical RecA filament. However, the Rad51 proteins do not have the C-terminal domain found in RecA, but have an N-terminal extension that is absent in the RecA protein. Both the RecA C-terminal domain and the Rad51 N-terminal domain bind DNA. We have used electron microscopy to show that the lobes of the yeast and human Rad51 filaments appear to be formed by N-terminal domains. These lobes are conformationally flexible in both RecA and Rad51. Within RecA filaments, the change between the "active" and "inactive" states appears to mainly involve a large movement of the C-terminal lobe. The N-terminal domain of Rad51 and the C-terminal domain of RecA may have arisen from convergent evolution to play similar roles in the filaments.

摘要

细菌的RecA蛋白和真核生物的Rad51蛋白都能在DNA上形成螺旋状核蛋白丝,催化两个同源DNA分子之间的链转移。然而,这些蛋白中只有ATP结合核心得以保留,并且在解旋酶和F1 - ATP酶中也发现了相同的核心。RecA蛋白的C末端结构域在螺旋状RecA丝内形成叶状结构。然而,Rad51蛋白没有RecA中发现的C末端结构域,而是有一个RecA蛋白中不存在的N末端延伸。RecA的C末端结构域和Rad51的N末端结构域都能结合DNA。我们利用电子显微镜显示,酵母和人类Rad51丝的叶状结构似乎是由N末端结构域形成的。这些叶状结构在RecA和Rad51中在构象上都是灵活的。在RecA丝内,“活性”和“非活性”状态之间的变化似乎主要涉及C末端叶状结构的大幅移动。Rad51的N末端结构域和RecA的C末端结构域可能是通过趋同进化产生的,以便在丝中发挥相似的作用。

相似文献

1
Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8419-24. doi: 10.1073/pnas.111005398.
3
Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding.
J Biol Chem. 2005 Jul 15;280(28):26303-11. doi: 10.1074/jbc.M503244200. Epub 2005 May 21.
4
What is the structure of the RecA-DNA filament?
Curr Protein Pept Sci. 2004 Apr;5(2):73-9. doi: 10.2174/1389203043486883.
5
S-DNA and RecA/RAD51-Mediated Strand Exchange in Vitro.
Biochemistry. 2019 Apr 16;58(15):2009-2016. doi: 10.1021/acs.biochem.8b01125. Epub 2019 Mar 28.
6
The Rad51/RadA N-terminal domain activates nucleoprotein filament ATPase activity.
Structure. 2006 Jun;14(6):983-92. doi: 10.1016/j.str.2006.04.001.
7
Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments.
Mol Cell Biol. 2005 Jun;25(11):4377-87. doi: 10.1128/MCB.25.11.4377-4387.2005.
8
Similarity of the yeast RAD51 filament to the bacterial RecA filament.
Science. 1993 Mar 26;259(5103):1896-9. doi: 10.1126/science.8456314.
9
Human Dmc1 protein binds DNA as an octameric ring.
Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10684-8. doi: 10.1073/pnas.96.19.10684.
10
Identification of the subunit-subunit interface of Xenopus Rad51.1 protein: similarity to RecA.
J Mol Biol. 2004 Jan 23;335(4):895-904. doi: 10.1016/j.jmb.2003.11.045.

引用本文的文献

1
Structural mechanism of strand exchange by the RAD51 filament.
Elife. 2025 Aug 18;14:RP107114. doi: 10.7554/eLife.107114.
3
and in precision oncology: Clinical implications for HRD associated breast and ovarian cancers (Review).
Int J Oncol. 2025 Aug;67(2). doi: 10.3892/ijo.2025.5771. Epub 2025 Jul 4.
4
BRCA2 C-terminal clamp restructures RAD51 dimers to bind B-DNA for replication fork stability.
Mol Cell. 2025 Jun 5;85(11):2080-2096.e6. doi: 10.1016/j.molcel.2025.05.010. Epub 2025 May 28.
6
ATP hydrolysis-driven structural transitions within the Rad51 and Dmc1 nucleoprotein filaments.
bioRxiv. 2025 Mar 19:2025.03.19.644215. doi: 10.1101/2025.03.19.644215.
7
BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments.
Nature. 2025 Apr;640(8060):1103-1111. doi: 10.1038/s41586-025-08749-x. Epub 2025 Mar 26.
9
How bacteria initiate DNA replication comes into focus.
Bioessays. 2025 Jan;47(1):e2400151. doi: 10.1002/bies.202400151. Epub 2024 Oct 10.
10
Human RAD52 stimulates the RAD51-mediated homology search.
Life Sci Alliance. 2023 Dec 11;7(3). doi: 10.26508/lsa.202201751. Print 2024 Mar.

本文引用的文献

1
A robust algorithm for the reconstruction of helical filaments using single-particle methods.
Ultramicroscopy. 2000 Dec;85(4):225-34. doi: 10.1016/s0304-3991(00)00062-0.
2
Rad51 accumulation at sites of DNA damage and in postreplicative chromatin.
J Cell Biol. 2000 Jul 24;150(2):283-91. doi: 10.1083/jcb.150.2.283.
4
Ordered intracellular RecA-DNA assemblies: a potential site of in vivo RecA-mediated activities.
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6791-6. doi: 10.1073/pnas.090532397.
5
Identification of Rad51 alteration in patients with bilateral breast cancer.
J Hum Genet. 2000;45(3):133-7. doi: 10.1007/s100380050199.
6
Crystal structure of Escherichia coli UvrB C-terminal domain, and a model for UvrB-uvrC interaction.
FEBS Lett. 2000 Jan 14;465(2-3):161-4. doi: 10.1016/s0014-5793(99)01690-7.
7
Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair.
EMBO J. 1999 Dec 15;18(24):6899-907. doi: 10.1093/emboj/18.24.6899.
8
Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair.
J Biochem. 1999 Dec;126(6):986-90. doi: 10.1093/oxfordjournals.jbchem.a022566.
9
Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7.
Cell. 1999 Oct 15;99(2):167-77. doi: 10.1016/s0092-8674(00)81648-7.
10
Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus.
Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11717-22. doi: 10.1073/pnas.96.21.11717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验