Suppr超能文献

顶端膜氯离子通道的环磷酸腺苷激活:阻抗分析的理论思考

cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.

作者信息

Păunescu T G, Helman S I

机构信息

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Biophys J. 2001 Aug;81(2):838-51. doi: 10.1016/S0006-3495(01)75745-1.

Abstract

Transepithelial electrical impedance analysis provides a sensitive method to evaluate the conductances and capacitances of apical and basolateral plasma membranes of epithelial cells. Impedance analysis is complicated, due not only to the anatomical arrangement of the cells and their paracellular shunt pathways, but also in particular to the existence of audio frequency-dependent capacitances or dispersions. In this paper we explore implications and consequences of anatomically related Maxwell-Wagner and Cole-Cole dielectric dispersions that impose limitations, approximations, and pitfalls of impedance analysis when tissues are studied under widely ranging spontaneous rates of transport, and in particular when apical membrane sodium and chloride channels are activated by adenosine 3',5'-cyclic monophosphate (cAMP) in A6 epithelia. We develop the thesis that capacitive relaxation processes of any origin lead not only to dependence on frequency of the impedance locus, but also to the appearance of depressed semicircles in Nyquist transepithelial impedance plots, regardless of the tightness or leakiness of the paracellular shunt pathways. Frequency dependence of capacitance precludes analysis of data in traditional ways, where capacitance is assumed constant, and is especially important when apical and/or basolateral membranes exhibit one or more dielectric dispersions.

摘要

跨上皮电阻抗分析提供了一种灵敏的方法来评估上皮细胞顶端和基底外侧质膜的电导和电容。阻抗分析很复杂,这不仅是由于细胞的解剖结构及其细胞旁分流途径,还特别因为存在音频频率依赖性电容或频散现象。在本文中,我们探讨了与解剖结构相关的麦克斯韦-瓦格纳和科尔-科尔介电频散的影响及后果,这些频散在广泛变化的自发转运速率下研究组织时,尤其是当A6上皮细胞中的顶端膜钠和氯通道被3',5'-环磷酸腺苷(cAMP)激活时,会给阻抗分析带来限制、近似和陷阱。我们提出这样的论点,即任何来源的电容性弛豫过程不仅会导致阻抗轨迹对频率的依赖性,还会导致在奈奎斯特跨上皮阻抗图中出现凹陷的半圆,而与细胞旁分流途径的紧密程度或渗漏程度无关。电容对频率的依赖性排除了以传统方式(假设电容恒定)对数据进行分析的可能性,当顶端和/或基底外侧膜表现出一种或多种介电频散时,这一点尤为重要。

相似文献

1
cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.
Biophys J. 2001 Aug;81(2):838-51. doi: 10.1016/S0006-3495(01)75745-1.
2
PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
Biophys J. 2001 Aug;81(2):852-66. doi: 10.1016/S0006-3495(01)75746-3.
3
Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes.
Biophys J. 1999 Jan;76(1 Pt 1):219-32. doi: 10.1016/S0006-3495(99)77191-2.
4
Chloride transport in rabbit esophageal epithelial cells.
Am J Physiol Gastrointest Liver Physiol. 2002 Apr;282(4):G663-75. doi: 10.1152/ajpgi.00085.2001.
5
Forskolin activation of apical Cl- channel and Na+/K+/2Cl- cotransporter via a PTK-dependent pathway in renal epithelium.
Biochem Biophys Res Commun. 2001 Jul 27;285(4):880-4. doi: 10.1006/bbrc.2001.5251.
6
Cordyceps militaris extract stimulates Cl(-) secretion across human bronchial epithelia by both Ca(2+)(-) and cAMP-dependent pathways.
J Ethnopharmacol. 2011 Oct 31;138(1):201-11. doi: 10.1016/j.jep.2011.08.081. Epub 2011 Sep 12.
7
Apical versus basolateral P2Y(6) receptor-mediated Cl(-) secretion in immortalized bronchial epithelia.
Am J Respir Cell Mol Biol. 2009 Jun;40(6):733-45. doi: 10.1165/rcmb.2008-0020OC. Epub 2008 Nov 14.
10
ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model.
Pflugers Arch. 2003 Jan;445(4):522-8. doi: 10.1007/s00424-002-0956-0. Epub 2002 Dec 4.

引用本文的文献

1
Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues.
Front Bioeng Biotechnol. 2020 Jan 24;7:474. doi: 10.3389/fbioe.2019.00474. eCollection 2019.
2
Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance.
Biophys J. 2009 Oct 21;97(8):2202-11. doi: 10.1016/j.bpj.2009.08.003.
3
The dielectric response of spherical live cells in suspension: an analytic solution.
Biophys J. 2008 Nov 1;95(9):4174-82. doi: 10.1529/biophysj.108.137042. Epub 2008 Jul 25.
5
PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
Biophys J. 2001 Aug;81(2):852-66. doi: 10.1016/S0006-3495(01)75746-3.

本文引用的文献

1
Electrical properties of tissue and cell suspensions.
Adv Biol Med Phys. 1957;5:147-209. doi: 10.1016/b978-1-4832-3111-2.50008-0.
2
PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
Biophys J. 2001 Aug;81(2):852-66. doi: 10.1016/S0006-3495(01)75746-3.
3
LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na(+) transport in A6 epithelia.
Am J Physiol Cell Physiol. 2000 Jul;279(1):C236-47. doi: 10.1152/ajpcell.2000.279.1.C236.
4
Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption.
Am J Physiol. 1999 Sep;277(3):C531-6. doi: 10.1152/ajpcell.1999.277.3.C531.
5
Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes.
Biophys J. 1999 Jan;76(1 Pt 1):219-32. doi: 10.1016/S0006-3495(99)77191-2.
6
Time-dependent stimulation by aldosterone of blocker-sensitive ENaCs in A6 epithelia.
Am J Physiol. 1998 Apr;274(4):C947-57. doi: 10.1152/ajpcell.1998.274.4.C947.
7
Steroid hormone-dependent expression of blocker-sensitive ENaCs in apical membranes of A6 epithelia.
Am J Physiol. 1997 Nov;273(5):C1650-6. doi: 10.1152/ajpcell.1997.273.5.C1650.
9
Prostaglandin E2 increases 7-pS Cl- channel density in the apical membrane of A6 distal nephron cells.
Am J Physiol. 1997 Aug;273(2 Pt 1):C548-57. doi: 10.1152/ajpcell.1997.273.2.C548.
10
Substrate-dependent expression of Na+ transport and shunt conductance in A6 epithelia.
Am J Physiol. 1997 Aug;273(2 Pt 1):C434-41. doi: 10.1152/ajpcell.1997.273.2.C434.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验