Suppr超能文献

PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.

作者信息

Păunescu T G, Helman S I

机构信息

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Biophys J. 2001 Aug;81(2):852-66. doi: 10.1016/S0006-3495(01)75746-3.

Abstract

Measurements of transepithelial electrical impedance of continuously short-circuited A6 epithelia were made at audio frequencies (0.244 Hz to 10.45 kHz) to investigate the time course and extent to which prostaglandin E(2) (PGE(2)) modulates Cl(-) transport and apical membrane capacitance in this cell-cultured model epithelium. Apical and basolateral membrane resistances were determined by nonlinear curve-fitting of the impedance vectors at relatively low frequencies (<50 Hz) to equations (Păunescu, T. G., and S. I. Helman. 2001. Biophys. J. 81:838--851) where depressed Nyquist impedance semicircles were characteristic of the membrane impedances under control Na(+)-transporting and amiloride-inhibited conditions. In all tissues (control, amiloride-blocked, and amiloride-blocked and furosemide-pretreated), PGE(2) caused relatively small (< approximately 3 microA/cm(2)) and rapid (<60 s) maximal increase of chloride current due to activation of a rather large increase of apical membrane conductance that preceded significant activation of Na(+) transport through amiloride-sensitive epithelial Na(+) channels (ENaCs). Apical membrane capacitance was frequency-dependent with a Cole-Cole dielectric dispersion whose relaxation frequency was near 150 Hz. Analysis of the time-dependent changes of the complex frequency-dependent equivalent capacitance of the cells at frequencies >1.5 kHz revealed that the mean 9.8% increase of capacitance caused by PGE(2) was not correlated in time with activation of chloride conductance, but rather correlated with activation of apical membrane Na(+) transport.

摘要

相似文献

1
PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
Biophys J. 2001 Aug;81(2):852-66. doi: 10.1016/S0006-3495(01)75746-3.
2
cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.
Biophys J. 2001 Aug;81(2):838-51. doi: 10.1016/S0006-3495(01)75745-1.
4
Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia.
Am J Physiol Renal Physiol. 2003 Sep;285(3):F524-31. doi: 10.1152/ajprenal.00366.2001. Epub 2003 May 13.
5
Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes.
Biophys J. 1999 Jan;76(1 Pt 1):219-32. doi: 10.1016/S0006-3495(99)77191-2.
6
Na+ transport and impedance properties of cultured renal (A6 and 2F3) epithelia.
J Membr Biol. 1992 Feb;125(3):273-85. doi: 10.1007/BF00236439.
8
Apical Cl- channels in A6 cells.
J Membr Biol. 1998 Dec 1;166(3):169-78. doi: 10.1007/s002329900458.
9
Effects of aldosterone on the impedance properties of cultured renal amphibian epithelia.
J Membr Biol. 1993 Apr;133(1):17-27. doi: 10.1007/BF00231874.

引用本文的文献

1
Activity of Single Insect Olfactory Receptors Triggered by Airborne Compounds Recorded in Self-Assembled Tethered Lipid Bilayer Nanoarchitectures.
ACS Appl Mater Interfaces. 2023 Oct 11;15(40):46655-46667. doi: 10.1021/acsami.3c09304. Epub 2023 Sep 27.
3
The dielectric response of spherical live cells in suspension: an analytic solution.
Biophys J. 2008 Nov 1;95(9):4174-82. doi: 10.1529/biophysj.108.137042. Epub 2008 Jul 25.
5
Mechanisms of regulation of epithelial sodium channel by SGK1 in A6 cells.
J Gen Physiol. 2004 Oct;124(4):395-407. doi: 10.1085/jgp.200409120.
6
cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.
Biophys J. 2001 Aug;81(2):838-51. doi: 10.1016/S0006-3495(01)75745-1.

本文引用的文献

1
cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.
Biophys J. 2001 Aug;81(2):838-51. doi: 10.1016/S0006-3495(01)75745-1.
2
cAMP-sensitive endocytic trafficking in A6 epithelia.
Am J Physiol Cell Physiol. 2001 Apr;280(4):C752-62. doi: 10.1152/ajpcell.2001.280.4.C752.
3
LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na(+) transport in A6 epithelia.
Am J Physiol Cell Physiol. 2000 Jul;279(1):C236-47. doi: 10.1152/ajpcell.2000.279.1.C236.
4
Secretory apical Cl- channels in A6 cells: possible control by cell Ca2+ and cAMP.
Pflugers Arch. 1999 Aug;438(3):344-53. doi: 10.1007/s004240050919.
5
Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes.
Biophys J. 1999 Jan;76(1 Pt 1):219-32. doi: 10.1016/S0006-3495(99)77191-2.
6
Apical Cl- channels in A6 cells.
J Membr Biol. 1998 Dec 1;166(3):169-78. doi: 10.1007/s002329900458.
7
Time-dependent stimulation by aldosterone of blocker-sensitive ENaCs in A6 epithelia.
Am J Physiol. 1998 Apr;274(4):C947-57. doi: 10.1152/ajpcell.1998.274.4.C947.
8
Steroid hormone-dependent expression of blocker-sensitive ENaCs in apical membranes of A6 epithelia.
Am J Physiol. 1997 Nov;273(5):C1650-6. doi: 10.1152/ajpcell.1997.273.5.C1650.
10
Prostaglandin E2 increases 7-pS Cl- channel density in the apical membrane of A6 distal nephron cells.
Am J Physiol. 1997 Aug;273(2 Pt 1):C548-57. doi: 10.1152/ajpcell.1997.273.2.C548.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验