Suppr超能文献

MscL门控机制的结构模型。

Structural models of the MscL gating mechanism.

作者信息

Sukharev S, Durell S R, Guy H R

机构信息

Department of Biology, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Biophys J. 2001 Aug;81(2):917-36. doi: 10.1016/S0006-3495(01)75751-7.

Abstract

Three-dimensional structural models of the mechanosensitive channel of large conductance, MscL, from the bacteria Mycobacterium tuberculosis and Escherichia coli were developed for closed, intermediate, and open conformations. The modeling began with the crystal structure of M. tuberculosis MscL, a homopentamer with two transmembrane alpha-helices, M1 and M2, per subunit. The first 12 N-terminal residues, not resolved in the crystal structure, were modeled as an amphipathic alpha-helix, called S1. A bundle of five parallel S1 helices are postulated to form a cytoplasmic gate. As membrane tension induces expansion, the tilts of M1 and M2 are postulated to increase as they move away from the axis of the pore. Substantial expansion is postulated to occur before the increased stress in the S1 to M1 linkers pulls the S1 bundle apart. During the opening transition, the S1 helices and C-terminus amphipathic alpha-helices, S3, are postulated to dock parallel to the membrane surface on the perimeter of the complex. The proposed gating mechanism reveals critical spatial relationships between the expandable transmembrane barrel formed by M1 and M2, the gate formed by S1 helices, and "strings" that link S1s to M1s. These models are consistent with numerous experimental results and modeling criteria.

摘要

构建了来自结核分枝杆菌和大肠杆菌的大电导机械敏感通道(MscL)在关闭、中间和开放构象下的三维结构模型。建模工作始于结核分枝杆菌MscL的晶体结构,它是一种同五聚体,每个亚基有两个跨膜α螺旋,即M1和M2。晶体结构中未解析的前12个N端残基被建模为一个两亲性α螺旋,称为S1。推测一束五个平行的S1螺旋形成一个细胞质门。随着膜张力诱导扩张,假定M1和M2的倾斜度会随着它们远离孔轴而增加。在S1与M1连接子中的应力增加导致S1束分离之前,假定会发生大量扩张。在开放转变过程中,推测S1螺旋和C端两亲性α螺旋S3会平行于复合物周边的膜表面对接。所提出的门控机制揭示了由M1和M2形成的可扩张跨膜桶、由S1螺旋形成的门以及将S1连接到M1的“链”之间的关键空间关系。这些模型与众多实验结果和建模标准一致。

相似文献

1
Structural models of the MscL gating mechanism.
Biophys J. 2001 Aug;81(2):917-36. doi: 10.1016/S0006-3495(01)75751-7.
2
The gating mechanism of the large mechanosensitive channel MscL.
Nature. 2001 Feb 8;409(6821):720-4. doi: 10.1038/35055559.
4
Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel.
Science. 1998 Dec 18;282(5397):2220-6. doi: 10.1126/science.282.5397.2220.
6
A cytoplasmic helix is required for pentamer formation of the Escherichia coli MscL mechanosensitive channel.
J Biochem. 2015 Aug;158(2):109-14. doi: 10.1093/jb/mvv019. Epub 2015 Feb 19.
7
Structure and function of the bacterial mechanosensitive channel of large conductance.
Protein Sci. 1999 Oct;8(10):1915-21. doi: 10.1110/ps.8.10.1915.
8
Structural determinants of MscL gating studied by molecular dynamics simulations.
Biophys J. 2001 May;80(5):2074-81. doi: 10.1016/S0006-3495(01)76181-4.
10
Conformational pathways in the gating of Escherichia coli mechanosensitive channel.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5999-6004. doi: 10.1073/pnas.092051099. Epub 2002 Apr 23.

引用本文的文献

2
Editorial: gating mechanism studies and modulator discovery for MscL.
Front Chem. 2024 Feb 9;12:1376617. doi: 10.3389/fchem.2024.1376617. eCollection 2024.
3
Mechanosensitive aquaporins.
Biophys Rev. 2023 Jul 17;15(4):497-513. doi: 10.1007/s12551-023-01098-x. eCollection 2023 Aug.
4
A novel force transduction pathway from a tension sensor to the gate in the mechano-gating of MscL channel.
Front Chem. 2023 Jun 6;11:1175443. doi: 10.3389/fchem.2023.1175443. eCollection 2023.
7
Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel.
Comput Struct Biotechnol J. 2022 May 23;20:2539-2550. doi: 10.1016/j.csbj.2022.05.022. eCollection 2022.
8
Mechanical Activation of MscL Revealed by a Locally Distributed Tension Molecular Dynamics Approach.
Biophys J. 2021 Jan 19;120(2):232-242. doi: 10.1016/j.bpj.2020.11.2274. Epub 2020 Dec 15.
9
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target.
Microbiol Mol Biol Rev. 2020 Jan 15;84(1). doi: 10.1128/MMBR.00055-19. Print 2020 Feb 19.
10
Effects of Low Intensity Focused Ultrasound on Liposomes Containing Channel proteins.
Sci Rep. 2018 Nov 22;8(1):17250. doi: 10.1038/s41598-018-35486-1.

本文引用的文献

1
The amino acid pool in Escherichia coli.
Bacteriol Rev. 1962 Sep;26(3):292-335. doi: 10.1128/br.26.3.292-335.1962.
2
Chemically charging the pore constriction opens the mechanosensitive channel MscL.
Biophys J. 2001 May;80(5):2198-206. doi: 10.1016/S0006-3495(01)76192-9.
3
Structural determinants of MscL gating studied by molecular dynamics simulations.
Biophys J. 2001 May;80(5):2074-81. doi: 10.1016/S0006-3495(01)76181-4.
4
Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli.
J Bacteriol. 2001 Apr;183(8):2399-404. doi: 10.1128/JB.183.8.2399-2404.2001.
5
The gating mechanism of the large mechanosensitive channel MscL.
Nature. 2001 Feb 8;409(6821):720-4. doi: 10.1038/35055559.
7
Crystallographic analyses of ion channels: lessons and challenges.
J Biol Chem. 2000 Jan 14;275(2):713-6. doi: 10.1074/jbc.275.2.713.
9
Structure and function of the bacterial mechanosensitive channel of large conductance.
Protein Sci. 1999 Oct;8(10):1915-21. doi: 10.1110/ps.8.10.1915.
10
Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity.
Biophys J. 1999 Oct;77(4):1960-72. doi: 10.1016/S0006-3495(99)77037-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验