Grant P, Pant H C
Laboratory of Neurochemistry, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
J Neurocytol. 2000 Nov-Dec;29(11-12):843-72. doi: 10.1023/a:1010999509251.
Neurofilament proteins, a major intermediate filament component of the neuronal cytoskeleton, are organized as 10 nm thick filaments in axons and dendrites. They are large, abundantly phosphorylated proteins with numerous phosphate acceptor sites, up to 100 in some cases, organized as numerous repeat motifs. Together with other cytoskeletal components such as microtubules, MAPs, actin and plectin-like linking molecules, they make up a dynamic lattice that sustains neuronal function from neuronal "birthday" to apoptotic cell death. The activity of the neuronal cytoskeleton is regulated by phosphorylation, dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Factors regulating multisite phosphorylation of NFs are topographically localized, with maximum phosphorylation of NF proteins consigned to axons. Phosphorylation defines the nature of NF interactions with one another and with other cytoskeletal components such as microtubules, MAPs and actin. To understand how these functional interactions are regulated by phosphorylation we attempt to identify the relevant kinases and phosphatases, their specific targets and the factors modulating their activity. As an initial working model we propose that NF phosphorylation is regulated topographically in neurons by compartment-specific macromolecular complexes of substrates, kinases and phosphatases. This implies that axonal complexes differ structurally and functionally from those in cell bodies and dendrites. Such protein assemblies, by virtue of conformational changes within proteins, facilitate ordered, sequential multisite phosphorylations that modulate dynamic cytoskeletal interactions.
神经丝蛋白是神经元细胞骨架的主要中间丝成分,在轴突和树突中组装成10纳米厚的细丝。它们是大型的、大量磷酸化的蛋白质,具有众多的磷酸化受体位点,在某些情况下多达100个,以众多重复基序的形式组织起来。它们与其他细胞骨架成分如微管、微管相关蛋白(MAPs)、肌动蛋白和网蛋白样连接分子一起,构成一个动态晶格,从神经元“诞生”到凋亡性细胞死亡维持神经元功能。神经元细胞骨架的活性由众多相关激酶、磷酸酶及其调节剂介导的磷酸化、去磷酸化反应调节。调节神经丝多位点磷酸化的因子在拓扑学上是定位的,神经丝蛋白的最大磷酸化发生在轴突。磷酸化决定了神经丝彼此之间以及与其他细胞骨架成分如微管、微管相关蛋白和肌动蛋白相互作用的性质。为了了解这些功能相互作用是如何通过磷酸化来调节的,我们试图鉴定相关的激酶和磷酸酶、它们的特定靶点以及调节其活性的因子。作为一个初步的工作模型,我们提出神经丝磷酸化在神经元中由底物、激酶和磷酸酶的特定区域大分子复合物进行拓扑调节。这意味着轴突复合物在结构和功能上与细胞体和树突中的复合物不同。这种蛋白质组装通过蛋白质内部的构象变化,促进有序、连续的多位点磷酸化,从而调节动态的细胞骨架相互作用。