Zhang W, Ke H, Tretiakova A P, Jameson B, Colman R W
The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
Protein Sci. 2001 Aug;10(8):1481-9. doi: 10.1110/ps.6601.
Cyclic nucleotide phosphodiesterase 3A (PDE3A) hydrolyzes cAMP to AMP, but is competitively inhibited by cGMP due to a low k(cat) despite a tight K(m). Cyclic AMP elevation is known to inhibit all pathways of platelet activation, and thus regulation of PDE3 activity is significant. Although cGMP elevation will inhibit platelet function, the major action of cGMP in platelets is to elevate cAMP by inhibiting PDE3A. To investigate the molecular details of how cGMP, a similar but not identical molecule to cAMP, behaves as an inhibitor of PDE3A, we constructed a molecular model of the catalytic domain of PDE3A based on homology to the recently determined X-ray crystal structure of PDE4B. Based on the excellent fit of this model structure, we mutated nine amino acids in the putative catalytic cleft of PDE3A to alanine using site-directed mutagenesis. Six of the nine mutants (Y751A, H840A, D950A, F972A, Q975A, and F1004A) significantly decreased catalytic efficiency, and had k(cat)/K(m) less than 10% of the wild-type PDE3A using cAMP as substrate. Mutants N845A, F972A, and F1004A showed a 3- to 12-fold increase of K(m) for cAMP. Four mutants (Y751A, H840A, D950A, and F1004A) had a 9- to 200-fold increase of K(i) for cGMP in comparison to the wild-type PDE3A. Studies of these mutants and our previous study identified two groups of amino acids: E866 and F1004 contribute commonly to both cAMP and cGMP interactions while N845, E971, and F972 residues are unique for cAMP and the residues Y751, H836, H840, and D950 interact with cGMP. Therefore, our results provide biochemical evidence that cGMP interacts with the active site residues differently from cAMP.
环核苷酸磷酸二酯酶3A(PDE3A)将环磷酸腺苷(cAMP)水解为腺苷一磷酸(AMP),尽管其米氏常数(K(m))较低,但由于催化常数(k(cat))较低,它会受到环磷酸鸟苷(cGMP)的竞争性抑制。已知环磷酸腺苷水平升高会抑制血小板激活的所有途径,因此PDE3活性的调节具有重要意义。尽管环磷酸鸟苷水平升高会抑制血小板功能,但环磷酸鸟苷在血小板中的主要作用是通过抑制PDE3A来升高环磷酸腺苷。为了研究与环磷酸腺苷相似但不完全相同的环磷酸鸟苷如何作为PDE3A的抑制剂的分子细节,我们基于与最近确定的PDE4B的X射线晶体结构的同源性构建了PDE3A催化结构域的分子模型。基于该模型结构的良好拟合,我们使用定点诱变将PDE3A假定催化裂隙中的九个氨基酸突变为丙氨酸。九个突变体中的六个(Y751A、H840A、D950A、F972A、Q975A和F1004A)显著降低了催化效率,以环磷酸腺苷为底物时,其k(cat)/K(m)小于野生型PDE3A的10%。突变体N845A、F972A和F1004A对环磷酸腺苷的K(m)增加了3至12倍。与野生型PDE3A相比,四个突变体(Y751A、H840A、D950A和F1004A)对环磷酸鸟苷的抑制常数(K(i))增加了9至200倍。对这些突变体的研究以及我们之前的研究确定了两组氨基酸:E866和F1004对环磷酸腺苷和环磷酸鸟苷的相互作用都有共同贡献,而N845、E971和F972残基对环磷酸腺苷是独特的,Y751、H836、H840和D950残基与环磷酸鸟苷相互作用。因此,我们的结果提供了生化证据,表明环磷酸鸟苷与活性位点残基的相互作用方式与环磷酸腺苷不同。