Agatonovic-Kustrin S, Beresford R, Yusof A P
School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
J Pharm Biomed Anal. 2001 Sep;26(2):241-54. doi: 10.1016/s0731-7085(01)00421-6.
A quantitative structure-permeability relationship was developed using Artificial Neural Network (ANN) modeling to study penetration across a polydimethylsiloxane membrane. A set of 254 compounds and their experimentally derived maximum steady state flux values used in this study was gathered from the literature. A total of 42 molecular descriptors were calculated for each compound. A genetic algorithm was used to select important molecular descriptors and supervised ANN was used to correlate selected descriptors with the experimentally derived maximum steady-state flux through the polydimethylsiloxane membrane (log J). Calculated molecular descriptors were used as the ANN's inputs and log J as the output. Developed model indicates that molecular shape and size, inter-molecular interactions, hydrogen-bonding capacity of drugs, and conformational stability could be used to predict drug absorption through skin. A 12-descriptor nonlinear computational neural network model has been developed for the estimation of log J values for a data set of 254 drugs. Described model does not require experimental parameters and could potentially provide useful prediction of membrane penetration of new drugs and reduce the need for actual compound synthesis and flux measurements.
利用人工神经网络(ANN)建模建立了定量结构-渗透性(QSP)关系,以研究药物透过聚二甲基硅氧烷膜的渗透情况。本研究使用的一组254种化合物及其通过实验得出的最大稳态通量值均来自文献。为每种化合物计算了总共42个分子描述符。使用遗传算法选择重要的分子描述符,并使用监督式人工神经网络将选定的描述符与通过聚二甲基硅氧烷膜的实验得出的最大稳态通量(log J)相关联。计算得到的分子描述符用作人工神经网络的输入,log J用作输出。所建立的模型表明,分子形状和大小、分子间相互作用、药物的氢键结合能力以及构象稳定性可用于预测药物经皮吸收。已开发出一种12描述符的非线性计算神经网络模型,用于估计254种药物数据集的log J值。所描述的模型不需要实验参数,有可能为新药的膜渗透提供有用的预测,并减少实际化合物合成和通量测量的需求。