Suppr超能文献

微管蛋白相互作用抗有丝分裂药物的物理化学特性

Physiochemical aspects of tubulin-interacting antimitotic drugs.

作者信息

Correia J J, Lobert S

机构信息

Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.

出版信息

Curr Pharm Des. 2001 Sep;7(13):1213-28. doi: 10.2174/1381612013397438.

Abstract

A diverse group of natural biological compounds bind to microtubules and suppress microtubule dynamics. Here we review the mechanism of microtubule assembly and dynamics as well as structural features that are important for nucleotide binding, GTP hydrolysis and stabilization of longitudinal and lateral protofilament contacts. Specific emphasis is placed upon the polar structure of the microtubule, the exposure of the nucleotide hydrolysis site at the + end and the conformational and configurational plasticity of the microtubule lattice. These features have important implications for the mechanism of dynamic instability and the disruptive action of antimitotic drugs. We then discuss the various classes of tubulin binding drugs emphasizing their site and mode of binding as well as the structural and energetic basis for their effects on microtubule assembly and dynamics. A common feature of tubulin-interacting compounds is a linkage to assembly, either the stabilization of a microtubule lattice by compounds like taxol or epothilone A, or the preferential formation of alternate lattice contacts and polymers at microtubule ends by compounds like colchicine, vinca alkaloids and cryptophycin-52. Finally, we explore the likely possibility that these drugs also disrupt the regulation of microtubule dynamics. Future generations of these compounds may be selectively developed to directly target the proteins that regulate mitotic spindle dynamics.

摘要

多种天然生物化合物可与微管结合并抑制微管动力学。在此,我们综述微管组装和动力学的机制,以及对于核苷酸结合、GTP水解以及纵向和横向原纤维接触稳定化而言重要的结构特征。特别强调微管的极性结构、核苷酸水解位点在正端的暴露以及微管晶格的构象和构型可塑性。这些特征对于动态不稳定性机制和抗有丝分裂药物的破坏作用具有重要意义。然后我们讨论各类微管蛋白结合药物,着重阐述它们的结合位点和模式,以及它们影响微管组装和动力学的结构和能量基础。微管蛋白相互作用化合物的一个共同特征是与组装相关,要么像紫杉醇或埃坡霉素A这样的化合物使微管晶格稳定,要么像秋水仙碱、长春花生物碱和隐藻素-52这样的化合物在微管末端优先形成交替的晶格接触和聚合物。最后,我们探讨这些药物也可能破坏微管动力学调节的可能性。未来这些化合物的新一代可能会被选择性开发,以直接靶向调节有丝分裂纺锤体动力学的蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验