Suppr超能文献

微管的动态不稳定性:蒙特卡罗模拟及其在不同类型微管晶格中的应用

Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice.

作者信息

Martin S R, Schilstra M J, Bayley P M

机构信息

Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London, England.

出版信息

Biophys J. 1993 Aug;65(2):578-96. doi: 10.1016/S0006-3495(93)81091-9.

Abstract

Dynamic instability is the term used to describe the transition of an individual microtubule, apparently at random, between extended periods of slow growth and brief periods of rapid shortening. The typical sawtooth growth and shortening transition behavior has been successfully simulated numerically for the 13-protofilament microtubule A-lattice by a lateral cap model (Bayley, P. M., M. J. Schilstra, and S. R. Martin. 1990. J. Cell Sci. 95:33-48). This kinetic model is now extended systematically to other related lattice geometries, namely the 13-protofilament B-lattice and the 14-protofilament A-lattice, which contain structural "seams". The treatment requires the assignment of the free energies of specific protein-protein interactions in terms of the basic microtubule lattice. It is seen that dynamic instability is not restricted to the helically symmetric 13-protofilament A-lattice but is potentially a feature of all A- and B-lattices, irrespective of protofilament number. The advantages of this general energetic approach are that it allows a consistent treatment to be made for both ends of any microtubule lattice. Important features are the predominance of longitudinal interactions between tubulin molecules within the same protofilament and the implication of a relatively favorable interaction of tubulin-GDP with the growing microtubule end. For the three lattices specifically considered, the treatment predicts the dependence of the transition behavior upon tubulin concentration as a cooperative process, in good agreement with recent experimental observations. The model rationalizes the dynamic properties in terms of a metastable microtubule lattice of tubulin-GDP, stabilized by the kinetic process of tubulin-GTP addition. It provides a quantitative basis for the consideration of in vitro microtubule behaviour under both steady-state and non-steady-state conditions, for comparison with experimental data on the dilution-induced disassembly of microtubules. Similarly, the effects of small tubulin-binding molecules such as GDP and nonhydrolyzable GTP analogues are readily treated. An extension of the model allows a detailed quantitative examination of possible modes of substoichiometric action of a number of antimitotic drugs relevant to cancer chemotherapy.

摘要

动态不稳定性是用于描述单个微管在长时间缓慢生长和短时间快速缩短之间明显随机转换的术语。典型的锯齿状生长和缩短转换行为已通过侧向帽模型成功地对13根原纤维微管A晶格进行了数值模拟(贝利,P.M.,M.J. 席尔斯特拉,和S.R. 马丁。1990。《细胞科学杂志》95:33 - 48)。这个动力学模型现在被系统地扩展到其他相关的晶格几何结构,即包含结构“接缝”的13根原纤维B晶格和14根原纤维A晶格。这种处理需要根据基本微管晶格来确定特定蛋白质 - 蛋白质相互作用的自由能。可以看出,动态不稳定性并不局限于螺旋对称的13根原纤维A晶格,而是所有A晶格和B晶格潜在的一个特征,与原纤维数量无关。这种通用能量方法的优点是它允许对任何微管晶格的两端进行一致的处理。重要特征是同一原纤维内微管蛋白分子之间纵向相互作用的主导地位以及微管蛋白 - GDP与生长中的微管末端相对有利相互作用的含义。对于专门考虑的这三种晶格,该处理预测转换行为对微管蛋白浓度的依赖性是一个协同过程,与最近的实验观察结果非常一致。该模型根据由微管蛋白 - GTP添加的动力学过程稳定的微管蛋白 - GDP亚稳微管晶格来解释动态特性。它为考虑稳态和非稳态条件下的体外微管行为提供了定量基础,以便与关于微管稀释诱导解聚的实验数据进行比较。同样,诸如GDP和不可水解的GTP类似物等小分子微管蛋白结合分子的作用也很容易处理。该模型的扩展允许对一些与癌症化疗相关的抗有丝分裂药物亚化学计量作用的可能模式进行详细的定量研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8138/1225761/83ca3d759e70/biophysj00085-0022-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验