Suppr超能文献

GEST: a gene expression search tool based on a novel Bayesian similarity metric.

作者信息

Hunter L, Taylor R C, Leach S M, Simon R

机构信息

Center for Computational Pharmacology, Department of Pharmacology, School of Medicine, C236, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver CO 80206, USA.

出版信息

Bioinformatics. 2001;17 Suppl 1:S115-22. doi: 10.1093/bioinformatics/17.suppl_1.s115.

Abstract

Gene expression array technology has made possible the assay of expression levels of tens of thousands of genes at a time; large databases of such measurements are currently under construction. One important use of such databases is the ability to search for experiments that have similar gene expression levels as a query, potentially identifying previously unsuspected relationships among cellular states. Such searches depend crucially on the metric used to assess the similarity between pairs of experiments. The complex joint distribution of gene expression levels, particularly their correlational structure and non-normality, make simple similarity metrics such as Euclidean distance or correlational similarity scores suboptimal for use in this application. We present a similarity metric for gene expression array experiments that takes into account the complex joint distribution of expression values. We provide a computationally tractable approximation to this measure, and have implemented a database search tool based on it. We discuss implementation issues and efficiency, and we compare our new metric to other standard metrics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验