Coche-Guerente L, Labbé P, Mengeaud V
Laboratoire d'Electrochimie Organique et de Photochimie Redox, UMR 5630, Université Joseph Fourier-CNRS, Grenoble, France.
Anal Chem. 2001 Jul 15;73(14):3206-18. doi: 10.1021/ac001534l.
The amperometric response toward phenol of PPO-based rotating disk bioelectrodes is analyzed on the basis of a kinetic model taking into account internal and external mass transport effects and a CEC' electroenzymatic mechanism. Monophenolase activity of PPO catalyses the oxidation of phenol to o-quinone (step C). o-Quinone can then enter an amplification recycling process involving electrochemical reduction (step E) and enzymatic reoxidation (step C': catecholase activity). The rate-limiting steps such as monophenolase activity, catecholase recycling, permeability of the membrane, and activity and accessibility of the catalytic enzyme sites are theoretically considered and experimentally demonstrated for different electrode configurations including PPO immobilized in Laponite hydrogels and layer-by-layer self-assembled multilayers of PPO and poly(diallyldimethylammonium).
基于一个考虑了内部和外部传质效应以及CEC'电酶机制的动力学模型,对基于多酚氧化酶(PPO)的旋转圆盘生物电极对苯酚的安培响应进行了分析。PPO的单酚酶活性催化苯酚氧化为邻苯醌(步骤C)。然后邻苯醌可以进入一个放大循环过程,该过程涉及电化学还原(步骤E)和酶促再氧化(步骤C':儿茶酚酶活性)。对于不同的电极配置,包括固定在锂皂石水凝胶中的PPO以及PPO和聚二烯丙基二甲基氯化铵的逐层自组装多层膜,从理论上考虑并通过实验证明了诸如单酚酶活性、儿茶酚酶循环、膜的渗透性以及催化酶位点的活性和可及性等限速步骤。