Suppr超能文献

三聚氰胺 - 氰尿酸酯组装体中线性和皱缩带及环状玫瑰花结的热力学稳定性:模型描述

Thermodynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine--cyanurate assemblies: a model description.

作者信息

Bielejewska A G, Marjo C E, Prins L J, Timmerman P, de Jong F, Reinhoudt D N

机构信息

Laboratory of Supramolecular Chemistry and Technology, MESA(+) Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

出版信息

J Am Chem Soc. 2001 Aug 8;123(31):7518-33. doi: 10.1021/ja010664o.

Abstract

In this paper we describe model calculations for the self-assembly of N,N-disubstituted melamines 1 and N-substituted cyanuric acid or 5,5-disubstituted barbituric acid derivatives 2 into linear or crinkled tapes and cyclic rosettes via cooperative hydrogen bond formation. The model description considers all possible stereoisomeric tape structures consisting of two to eight different components (270 different species in total) and one cyclic hexameric rosette structure. Furthermore, eight steric parameters (R(12)-R(28)) are included that represent the different types of steric interactions within the assemblies. Most importantly, the model calculations clearly show that the tape/rosette ratio is very sensitive to changes in parameters that directly affect the internal energy of the rosette structure. In this respect, three parameters have been characterized, i.e., the basic equilibrium constant K(0) for the bimolecular association of a melamine and cyanurate, the equilibrium constant K(r)/K(0) for the cyclization of a linear hexamer, and the parameter R(12)-a(Z)b, representing attractive or repulsive interactions between adjacent melamine and cyanurate moieties. For example, an increase in K(0) from 100 to 10,000 M(-1) (A = B = 10 mM, K(r) = 0.01 M) or in K(r) from 0.001 to 0.1 M (A = B = 10 mM, K(0) = 1000 M(-1)) raises the concentration of the rosette from <5 to approximately 90% or from approximately 10 to approximately 85%, respectively. Similarly, a change in R(12)-a(Z)b from 1.0 (no repulsive or attractive interactions) to 1.5 (slight attractive interaction) raises the rosette fraction of the mixture from 25% to 45%. In sharp contrast to this, the model calculations show that parameters that only affect the internal energy of the tapes (R(13)--R(28)) hardly change the tape/rosette ratio. For example, by changing R(13)-a(EE)a from 1.0 (no repulsive or attractive interactions) to 0.001 (maximum repulsion), the rosette fraction in the mixture changes by no more than 8%. Including all possible sterics that occur only in tapes (i.e., R(13)--R(28)), the maximum change in rosette fraction is no more than 16%. These predictions can be rationalized by considering that any change in the stability of the tapes only affects the rosette concentration by means of shifting the equilibrium between free 1 and 2 and the rosette. Since there are 270 different tapelike structures in equilibrium, this mixture represents the best buffer solution in the world. These model calculations seem to conflict with the concept of peripheral crowding as put forward by Whitesides et al., which states that bulky substituents on the periphery of the melamine (and cyanurate) components can be used to shift the tape/rosette equilibrium completely toward the rosette structure. Computer simulations (CHARMm 24.0) show that linear tapes with bulky substituents are severely distorted from planarity, while the corresponding rosette remains planar. Therefore, tapelike structures with bulky substituents are expected to have a much higher solubility than the corresponding rosettes, which can explain the observed crystal data.

摘要

在本文中,我们描述了关于N,N-二取代三聚氰胺1与N-取代氰尿酸或5,5-二取代巴比妥酸衍生物2通过协同氢键形成自组装成线性或皱缩带以及环状玫瑰花结的模型计算。该模型描述考虑了由两到八个不同组分组成的所有可能的立体异构带结构(总共270种不同物种)以及一种环状六聚体玫瑰花结结构。此外,还纳入了八个空间参数(R(12)-R(28)),它们代表了组装体内不同类型的空间相互作用。最重要的是,模型计算清楚地表明,带/玫瑰花结比例对直接影响玫瑰花结结构内能的参数变化非常敏感。在这方面,已确定了三个参数,即三聚氰胺与氰尿酸盐双分子缔合的基本平衡常数K(0)、线性六聚体环化的平衡常数K(r)/K(0),以及代表相邻三聚氰胺和氰尿酸盐部分之间吸引或排斥相互作用的参数R(12)-a(Z)b。例如,K(0)从100增加到10,000 M⁻¹(A = B = 10 mM,K(r) = 0.01 M)或K(r)从0.001增加到0.1 M(A = B = 10 mM,K(0) = 1000 M⁻¹),会使玫瑰花结的浓度分别从<5%提高到约90%或从约10%提高到约85%。同样,R(12)-a(Z)b从1.0(无排斥或吸引相互作用)变为1.5(轻微吸引相互作用),会使混合物中玫瑰花结的比例从25%提高到45%。与此形成鲜明对比的是,模型计算表明,仅影响带的内能的参数(R(13)--R(28))几乎不会改变带/玫瑰花结比例。例如,将R(13)-a(EE)a从1.0(无排斥或吸引相互作用)变为0.001(最大排斥),混合物中玫瑰花结的比例变化不超过8%。包括仅在带中出现的所有可能的空间效应(即R(13)--R(28)),玫瑰花结比例的最大变化不超过16%。考虑到带稳定性的任何变化仅通过改变游离的1和2与玫瑰花结之间的平衡来影响玫瑰花结浓度,这些预测是合理的。由于有270种不同的类带结构处于平衡状态,这种混合物代表了世界上最好的缓冲溶液。这些模型计算似乎与Whitesides等人提出的外围拥挤概念相冲突,该概念指出三聚氰胺(和氰尿酸盐)组分外围的庞大取代基可用于使带/玫瑰花结平衡完全向玫瑰花结结构移动。计算机模拟(CHARMm 24.0)表明,带有庞大取代基的线性带严重偏离平面,而相应的玫瑰花结仍保持平面。因此,带有庞大取代基的类带结构预计比相应的玫瑰花结具有更高的溶解度,这可以解释所观察到的晶体数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验