Suppr超能文献

1-萘酚对具有不同成岩性质的土壤和地质样品的吸附作用。

Sorption of 1-naphthol to soil and geologic samples with varying diagenetic properties.

作者信息

Salloum M J, Dudas M J, McGill W B

机构信息

Department of Renewable Resources, University of Alberta, Edmonton, Canada.

出版信息

Chemosphere. 2001 Aug;44(4):779-87. doi: 10.1016/s0045-6535(00)00513-0.

Abstract

Remediation of contaminated land requires a firm understanding of the processes that occur between xenobiotics and soil colloids. It is currently accepted that the extent of xenobiotic uptake is proportional to the carbon quantity and character of the soil or geologic sample. Previous studies have developed empirical equations to predict the extent of sorption based on the aromatic carbon content. We examined these relationships with an independent set of soil and geologic samples and 1-naphthol. The 1-naphthol sorption coefficients varied significantly (P < 0.01) among sorbents and are consistent with the diagenetic properties of the organic matter in these samples. The cross-polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) and elemental data did not concur with the sorption data for most of the soil samples. We suggest that this contradiction may be due to a third variable, the physical organization of the organic matter. Chemical methods measure the whole sample, whereas short-term sorption occurs on the surface; therefore, only some organic matter domains in the soil are available for interaction with 1-naphthol. Hence, chemical data alone may be insufficient for predicting the sorption behavior of xenobiotics in soil and geologic samples.

摘要

修复受污染土地需要深入了解外源化合物与土壤胶体之间发生的过程。目前人们认为,外源化合物的吸收程度与土壤或地质样品的碳含量及特性成正比。以往的研究已经建立了基于芳香碳含量来预测吸附程度的经验方程。我们用一组独立的土壤和地质样品以及1-萘酚检验了这些关系。1-萘酚的吸附系数在吸附剂之间有显著差异(P < 0.01),并且与这些样品中有机质的成岩特性一致。对于大多数土壤样品,交叉极化魔角旋转(CPMAS)13C核磁共振(NMR)和元素数据与吸附数据并不一致。我们认为这种矛盾可能归因于第三个变量,即有机质的物理组织。化学方法测量的是整个样品,而短期吸附发生在表面;因此,土壤中只有一些有机质区域可用于与1-萘酚相互作用。因此,仅靠化学数据可能不足以预测外源化合物在土壤和地质样品中的吸附行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验