Suppr超能文献

用于预测有机化学品土壤-沉积物吸附系数的定量构效关系

Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals.

作者信息

Doucette William J

机构信息

Utah State University, Utah Water Research Laboratory, 8200 Old Main Hill, Logan, Utah 84322-8200, USA.

出版信息

Environ Toxicol Chem. 2003 Aug;22(8):1771-88. doi: 10.1897/01-362.

Abstract

Sorption coefficients are used to describe the equilibrium distribution of a chemical between a soil or sediment and the aqueous phase that it is in contact with. Although sorption coefficients for a particular organic chemical vary greatly from soil to soil, the observation has been made that sorption generally increases as the organic carbon content of the soil and the hydrophobicity of the chemical increases. This general observation resulted in the acceptance of organic carbon normalized sorption coefficients (KOC) as unique properties or constants of organic chemicals. In turn, KOC values have been estimated by quantitative structure-activity relationships (QSARs) developed by correlation with a variety of physical or chemical properties and structural descriptors related to the hydrophobicity of the chemical such as octanol-water partition coefficients, aqueous solubilities, molecularconnectivity indices, molecular weight, molecular surface area, and reverse-phase high-performance liquid chromatography retention times. The selection and application of the most appropriate QSAR for predicting KOC depend on several factors, including the availability of required input, the appropriateness of model to chemical of interest, and the methodology for calculating the necessary topological or structural information. A review of the existing QSARs for predicting KOC and the limitations of using the KOC approach to estimate sorption coefficients will be presented.

摘要

吸附系数用于描述一种化学物质在土壤或沉积物与其接触的水相之间的平衡分布。尽管特定有机化学物质的吸附系数因土壤而异,但人们观察到,随着土壤有机碳含量和化学物质疏水性的增加,吸附作用通常会增强。这一普遍观察结果使得有机碳归一化吸附系数(KOC)被接受为有机化学物质的独特性质或常数。反过来,KOC值已通过定量构效关系(QSAR)进行估算,这些关系是通过与各种与化学物质疏水性相关的物理或化学性质及结构描述符(如正辛醇 - 水分配系数、水溶性、分子连接性指数、分子量、分子表面积和反相高效液相色谱保留时间)相关联而建立的。选择和应用最合适的QSAR来预测KOC取决于几个因素,包括所需输入数据的可用性、模型对目标化学物质的适用性以及计算必要拓扑或结构信息的方法。本文将对现有的用于预测KOC的QSAR以及使用KOC方法估算吸附系数的局限性进行综述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验