Suppr超能文献

狂犬病毒进化史上宿主从翼手目转换至食肉目。

Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders.

作者信息

Badrane H, Tordo N

机构信息

Laboratoire des Lyssavirus, Department of Virology, Institut Pasteur, Paris, France.

出版信息

J Virol. 2001 Sep;75(17):8096-104. doi: 10.1128/jvi.75.17.8096-8104.2001.

Abstract

Lyssaviruses are unsegmented RNA viruses causing rabies. Their vectors belong to the Carnivora and Chiroptera orders. We studied 36 carnivoran and 17 chiropteran lyssaviruses representing the main genotypes and variants. We compared their genes encoding the surface glycoprotein, which is responsible for receptor recognition and membrane fusion. The glycoprotein is the main protecting antigen and bears virulence determinants. Point mutation is the main force in lyssavirus evolution, as Sawyer's test and phylogenetic analysis showed no evidence of recombination. Tests of neutrality indicated a neutral model of evolution, also supported by globally high ratios of synonymous substitutions (d(S)) to nonsynonymous substitutions (d(N)) (>7). Relative-rate tests suggested similar rates of evolution for all lyssavirus lineages. Therefore, the absence of recombination and similar evolutionary rates make phylogeny-based conclusions reliable. Phylogenetic reconstruction strongly supported the hypothesis that host switching occurred in the history of lyssaviruses. Indeed, lyssaviruses evolved in chiropters long before the emergence of carnivoran rabies, very likely following spillovers from bats. Using dated isolates, the average rate of evolution was estimated to be roughly 4.3 x 10(-4) d(S)/site/year. Consequently, the emergence of carnivoran rabies from chiropteran lyssaviruses was determined to have occurred 888 to 1,459 years ago. Glycoprotein segments accumulating more d(N) than d(S) were distinctly detected in carnivoran and chiropteran lyssaviruses. They may have contributed to the adaptation of the virus to the two distinct mammal orders. In carnivoran lyssaviruses they overlapped the main antigenic sites, II and III, whereas in chiropteran lyssaviruses they were located in regions of unknown functions.

摘要

狂犬病毒属是导致狂犬病的不分节段的RNA病毒。它们的宿主属于食肉目和翼手目。我们研究了代表主要基因型和变体的36种食肉动物和17种翼手目狂犬病毒。我们比较了它们编码表面糖蛋白的基因,该糖蛋白负责受体识别和膜融合。糖蛋白是主要的保护性抗原,并带有毒力决定因素。正如索耶检验和系统发育分析表明没有重组证据一样,点突变是狂犬病毒进化的主要驱动力。中性检验表明进化的中性模型,这也得到了同义替换(d(S))与非同义替换(d(N))的全球高比率(>7)的支持。相对速率检验表明所有狂犬病毒谱系的进化速率相似。因此,没有重组和相似的进化速率使得基于系统发育的结论可靠。系统发育重建有力地支持了狂犬病毒历史上发生宿主转换的假说。实际上,狂犬病毒在食肉动物狂犬病出现之前很久就在翼手目中进化,很可能是在从蝙蝠溢出之后。使用有时间标记的分离株,进化的平均速率估计约为4.3×10(-4) d(S)/位点/年。因此,确定食肉动物狂犬病从翼手目狂犬病毒中出现发生在888至1459年前。在食肉动物和翼手目狂犬病毒中明显检测到积累的d(N)多于d(S)的糖蛋白片段。它们可能有助于病毒适应这两个不同的哺乳动物目。在食肉动物狂犬病毒中,它们与主要抗原位点II和III重叠,而在翼手目狂犬病毒中,它们位于功能未知的区域。

相似文献

1
Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders.
J Virol. 2001 Sep;75(17):8096-104. doi: 10.1128/jvi.75.17.8096-8104.2001.
2
Bat lyssaviruses.
Rev Sci Tech. 2018 Aug;37(2):385-400. doi: 10.20506/rst.37.2.2809.
5
A molecular epidemiological study of Australian bat lyssavirus.
J Gen Virol. 2003 Feb;84(Pt 2):485-496. doi: 10.1099/vir.0.18652-0.
6
Comparative pathogenesis of different phylogroup I bat lyssaviruses in a standardized mouse model.
PLoS Negl Trop Dis. 2022 Jan 18;16(1):e0009845. doi: 10.1371/journal.pntd.0009845. eCollection 2022 Jan.
8
A perspective on lyssavirus emergence and perpetuation.
Curr Opin Virol. 2011 Dec;1(6):662-70. doi: 10.1016/j.coviro.2011.10.014. Epub 2011 Nov 10.
9
Lyssaviruses in Insectivorous Bats, South Africa, 2003-2018.
Emerg Infect Dis. 2020 Dec;26(12):3056-3060. doi: 10.3201/eid2612.203592.
10
Lyssavirus surveillance in bats of southern China's Guangxi Province.
Virus Genes. 2013 Apr;46(2):293-301. doi: 10.1007/s11262-012-0854-2. Epub 2012 Nov 30.

引用本文的文献

1
Evolutionary Diversity of Bat Rabies Virus in São Paulo State, Brazil.
Viruses. 2025 Jul 30;17(8):1063. doi: 10.3390/v17081063.
2
A Comprehensive Analysis and Forecast of Rabies Epidemic and Elimination Challenges - China, 2005-2023.
China CDC Wkly. 2025 Jul 18;7(29):967-972. doi: 10.46234/ccdcw2025.163.
4
Exploring one health-based strategies for rabies elimination: Overview and future prospects.
PLoS Negl Trop Dis. 2025 Jun 18;19(6):e0013159. doi: 10.1371/journal.pntd.0013159. eCollection 2025 Jun.
5
Broad geographical circulation of a novel vesiculovirus in bats in the Mediterranean region.
PLoS Negl Trop Dis. 2025 Jun 12;19(6):e0013172. doi: 10.1371/journal.pntd.0013172. eCollection 2025 Jun.
6
Analyzing the Evolution and Host Adaptation of the Rabies Virus from the Perspective of Codon Usage Bias.
Transbound Emerg Dis. 2023 Oct 10;2023:4667253. doi: 10.1155/2023/4667253. eCollection 2023.
8
Sex Bias in Sample Collections From Bats, the Culprit of SARS Coronavirus, SARS-Coronavirus-2, and Other Emerging Viruses.
Infect Microbes Dis. 2020 Oct 6;2(4):173-174. doi: 10.1097/IM9.0000000000000036. eCollection 2020 Dec.
9
Fifty Years of the National Rabies Control Program in Brazil under the One Health Perspective.
Pathogens. 2023 Nov 11;12(11):1342. doi: 10.3390/pathogens12111342.

本文引用的文献

1
Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity.
J Virol. 2001 Apr;75(7):3268-76. doi: 10.1128/JVI.75.7.3268-3276.2001.
2
Antigenic and genetic divergence of rabies viruses from bat species indigenous to Canada.
Virus Res. 2001 Apr;74(1-2):139-56. doi: 10.1016/s0168-1702(00)00259-8.
3
Bat lyssavirus infections.
Rev Sci Tech. 2000 Apr;19(1):177-96. doi: 10.20506/rst.19.1.1221.
5
RRTree: relative-rate tests between groups of sequences on a phylogenetic tree.
Bioinformatics. 2000 Mar;16(3):296-7. doi: 10.1093/bioinformatics/16.3.296.
6
Molecular epidemiology of enzootic rabies in California.
J Clin Virol. 1999 Dec;14(3):207-19. doi: 10.1016/s1386-6532(99)00054-2.
7
Ecology and evolution of rabies virus in Europe.
J Gen Virol. 1999 Oct;80 ( Pt 10):2545-2557. doi: 10.1099/0022-1317-80-10-2545.
8
Evolutionary aspects of recombination in RNA viruses.
J Gen Virol. 1999 Oct;80 ( Pt 10):2535-2543. doi: 10.1099/0022-1317-80-10-2535.
9
A method for detecting positive selection at single amino acid sites.
Mol Biol Evol. 1999 Oct;16(10):1315-28. doi: 10.1093/oxfordjournals.molbev.a026042.
10
Recombination in RNA viruses and in virus-resistant transgenic plants.
J Gen Virol. 1999 Jun;80 ( Pt 6):1339-1346. doi: 10.1099/0022-1317-80-6-1339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验