Smietanowski M
Department of Experimental and Clinical Physiology, Medical Academy, Warsaw, Poland.
Auton Neurosci. 2001 Jul 20;90(1-2):158-66. doi: 10.1016/S1566-0702(01)00283-1.
Procedures of nonlinear parameter estimation require large samples of data. In stationary physiological situations, usually short time series are available. The method of dynamics-dependent windowing and data aggregation procedure are proposed. This technique was tested on chaotic signal generated by Lorenz model and applied to investigate beat-to-beat control of the cardiovascular system in 10 healthy volunteers. Nonivasively recorded blood pressure, respiratory activity and blood oxygen saturation were digitized and saved for further off-line analysis. The experimental procedure consisted of 10 min control--C, 20 voluntary apneas 1 min each-A, interapnea 20 periods of 1 min spontaneous breathing--B, and 10 min free-breathing recovery--R. Respiration signal served as a reference for apnea and interapnea free-breathing identification period. Correlation dimension-CD, according to Grassberger and Procaccia, and recurrence plot strategy, according to Webber and Zbilut, were applied to check dynamical properties of the signals. Results of numerical experiment on Lorenz model, original and transformed by segmentation and aggregation, support our assumption of similarity of their dynamics. Error in CD and recurrence parameters estimation strongly depended on segment length and was about 5% for 600 to 1,200 data points. However, even for segments of 75 to 100 samples, it did not exceed 10% for all, but one, periodic testing signal. Segmentation and aggregation applied to interbeat interval (IBI) and total peripheral resistance (TPR) data showed that CD and recurrence variables estimated separately for apneic and interapneic period and those calculated for mixed (apneic and interapneic) intervals were different. Average CD and recurrence parameters of IBI and TPR for 10 subjects during apnea and interapnea intervals were significantly different than during control and recovery. The lowest CD (mean +/- S.D.) of 6.38 +/- 0.4, 5.62 +/- 0.2 and %recurrence 10.35 +/- 0.8, 6.62 +/- 0.6 (highest ratio 4.95 +/- 0.2, 5.13 +/- 0.3) were observed in apnea for IBI and TPR, respectively. Low values of the estimates computed for mixed periods may suggest the influence of slowly varying, quasiperiodic driving force due to experimental procedure regime. Signal dynamics-dependent windowing and data aggregation regardless of the sequence of data could be a practical solution for nonlinear analysis of very short repeatable time series.
非线性参数估计程序需要大量的数据样本。在稳定的生理状况下,通常只能获得短时间序列的数据。因此,我们提出了动态相关加窗和数据聚合程序的方法。该技术在由洛伦兹模型生成的混沌信号上进行了测试,并应用于研究10名健康志愿者心血管系统的逐搏控制。通过无创记录的血压、呼吸活动和血氧饱和度进行数字化处理并保存,以便进一步进行离线分析。实验过程包括10分钟的对照期——C,20次每次持续1分钟的自主呼吸暂停期——A,20个每次持续1分钟的呼吸暂停间期的自主呼吸期——B,以及10分钟的自由呼吸恢复期——R。呼吸信号作为呼吸暂停和呼吸暂停间期自由呼吸识别期的参考。根据格拉斯贝格尔和普罗卡西亚的方法计算关联维数——CD,并根据韦伯和兹比卢特的方法采用递归图策略,来检查信号的动力学特性。对洛伦兹模型进行数值实验的结果,以及通过分割和聚合进行变换后的结果,支持了我们关于它们动力学相似性的假设。CD和递归参数估计的误差强烈依赖于段长度,对于600至1200个数据点,误差约为5%。然而,即使对于75至100个样本的段,除了一个周期性测试信号外,所有信号的误差均不超过10%。应用于逐搏间期(IBI)和总外周阻力(TPR)数据的分割和聚合表明,分别针对呼吸暂停期和呼吸暂停间期计算的CD和递归变量,与针对混合(呼吸暂停和呼吸暂停间期)间期计算的结果不同。10名受试者在呼吸暂停和呼吸暂停间期的IBI和TPR的平均CD和递归参数,与对照期和恢复期相比有显著差异。在呼吸暂停期,IBI和TPR的最低CD(平均值±标准差)分别为6.38±0.4、5.62±0.2,以及最低递归率分别为10.35±0.8、6.62±0.6(最高比率分别为4.95±0.2、5.13±0.3)。混合期计算得到的估计值较低,这可能表明由于实验程序模式,存在缓慢变化的准周期驱动力的影响。无论数据序列如何,基于信号动力学的加窗和数据聚合可能是对非常短的可重复时间序列进行非线性分析的一种实用解决方案。