Suppr超能文献

Rpb8p的伙伴,酵母RNA聚合酶I、II和III共有的一个小亚基。

Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III.

作者信息

Briand J F, Navarro F, Rematier P, Boschiero C, Labarre S, Werner M, Shpakovski G V, Thuriaux P

机构信息

Service de Biochimie and Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, France.

出版信息

Mol Cell Biol. 2001 Sep;21(17):6056-65. doi: 10.1128/MCB.21.17.6056-6065.2001.

Abstract

Rpb8p, a subunit common to the three yeast RNA polymerases, is conserved among eukaryotes and absent from noneukaryotes. Defective mutants were found at an invariant GGLLM motif and at two other highly conserved amino acids. With one exception, they are clustered on the Rpb8p structure. They all impair a two-hybrid interaction with a fragment conserved in the largest subunits of RNA polymerases I (Rpa190p), II (Rpb1p), and III (Rpc160p). This fragment corresponds to the pore 1 module of the RNA polymerase II crystal structure and bears a highly conserved motif (P.I.KP.LW.GKQ) facing the GGLLM motif of Rpb8p. An RNA polymerase I mutant (rpa190-G728D) at the invariant glycyl of P.I.KP.LW.GKQ provokes a temperature-sensitive defect. Increasing the gene dosage of another common subunit, Rpb6p, suppresses this phenotype. It also suppresses a conditional growth defect observed when replacing Rpb8p by its human counterpart. Hence, Rpb6p and Rpb8p functionally interact in vivo. These two subunits are spatially separated by the pore 1 module and may also be possibly connected by the disorganized N half of Rpb6p, not included in the present structure data. Human Rpb6p is phosphorylated at its N-terminal Ser2, but an alanyl replacement at this position still complements an rpb6-Delta null allele. A two-hybrid interaction also occurs between Rpb8p and the product of orphan gene YGR089w. A ygr089-Delta null mutant has no detectable growth defect but aggravates the conditional growth defect of rpb8 mutants, suggesting that the interaction with Rpb8p may be physiologically relevant.

摘要

Rpb8p是酵母三种RNA聚合酶共有的一个亚基,在真核生物中保守,原核生物中不存在。在一个不变的GGLLM基序以及另外两个高度保守的氨基酸处发现了缺陷突变体。除了一个例外,它们聚集在Rpb8p结构上。它们都损害了与RNA聚合酶I(Rpa190p)、II(Rpb1p)和III(Rpc160p)最大亚基中保守片段的双杂交相互作用。该片段对应于RNA聚合酶II晶体结构的孔1模块,并带有一个面向Rpb8p的GGLLM基序的高度保守基序(P.I.KP.LW.GKQ)。P.I.KP.LW.GKQ不变的甘氨酰处的RNA聚合酶I突变体(rpa190 - G728D)引发温度敏感缺陷。增加另一个共同亚基Rpb6p的基因剂量可抑制该表型。它还抑制了用人源对应物替代Rpb8p时观察到的条件性生长缺陷。因此,Rpb6p和Rpb8p在体内功能上相互作用。这两个亚基在空间上被孔1模块隔开,也可能通过Rpb6p无序的N端(未包含在当前结构数据中)相连。人源Rpb6p在其N端Ser2处被磷酸化,但该位置的丙氨酸替代仍能互补rpb6 - Delta缺失等位基因。Rpb8p与孤儿基因YGR089w的产物之间也发生双杂交相互作用。ygr089 - Delta缺失突变体没有可检测到的生长缺陷,但加剧了rpb8突变体的条件性生长缺陷,表明与Rpb8p的相互作用可能具有生理相关性。

相似文献

1
Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III.
Mol Cell Biol. 2001 Sep;21(17):6056-65. doi: 10.1128/MCB.21.17.6056-6065.2001.
3
Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III.
Mol Cell Biol. 2003 May;23(9):3329-38. doi: 10.1128/MCB.23.9.3329-3338.2003.
8
Subunits shared by eukaryotic nuclear RNA polymerases.
Genes Dev. 1990 Mar;4(3):313-23. doi: 10.1101/gad.4.3.313.
9
Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases.
Nucleic Acids Res. 2007;35(2):634-47. doi: 10.1093/nar/gkl686. Epub 2006 Dec 19.
10
Subunits of yeast RNA polymerases: structure and function.
Curr Opin Microbiol. 1998 Apr;1(2):190-6. doi: 10.1016/s1369-5274(98)80010-6.

引用本文的文献

1
Structure of the recombinant RNA polymerase from African Swine Fever Virus.
Nat Commun. 2024 Feb 21;15(1):1606. doi: 10.1038/s41467-024-45842-7.
2
Never a dull enzyme, RNA polymerase II.
Transcription. 2023 Nov;14(1-2):49-67. doi: 10.1080/21541264.2023.2208023. Epub 2023 May 2.
3
Structural basis of RNA polymerase inhibition by viral and host factors.
Nat Commun. 2021 Sep 17;12(1):5523. doi: 10.1038/s41467-021-25666-5.
4
Three human RNA polymerases interact with TFIIH via a common RPB6 subunit.
Nucleic Acids Res. 2022 Jan 11;50(1):1-16. doi: 10.1093/nar/gkab612.
5
Biogenesis of RNA Polymerases in Yeast.
Front Mol Biosci. 2021 Apr 28;8:669300. doi: 10.3389/fmolb.2021.669300. eCollection 2021.
7
Comparative CRISPR type III-based knockdown of essential genes in hyperthermophilic and the evasion of lethal gene silencing.
RNA Biol. 2021 Mar;18(3):421-434. doi: 10.1080/15476286.2020.1813411. Epub 2020 Sep 21.
8
Genetic analysis reveals functions of atypical polyubiquitin chains.
Elife. 2018 Dec 14;7:e42955. doi: 10.7554/eLife.42955.
9
Evolution of multisubunit RNA polymerases in the three domains of life.
Nat Rev Microbiol. 2011 Feb;9(2):85-98. doi: 10.1038/nrmicro2507.
10
Integrative structure modeling of macromolecular assemblies from proteomics data.
Mol Cell Proteomics. 2010 Aug;9(8):1689-702. doi: 10.1074/mcp.R110.000067. Epub 2010 May 27.

本文引用的文献

1
Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.
Science. 2001 Jun 8;292(5523):1863-76. doi: 10.1126/science.1059493. Epub 2001 Apr 19.
3
Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae.
Mol Cell Biol. 2001 Jan;21(1):189-95. doi: 10.1128/MCB.21.1.189-195.2001.
5
Architecture of RNA polymerase II and implications for the transcription mechanism.
Science. 2000 Apr 28;288(5466):640-9. doi: 10.1126/science.288.5466.640.
6
Functional conservation of RNA polymerase II in fission and budding yeasts.
J Mol Biol. 2000 Feb 4;295(5):1119-27. doi: 10.1006/jmbi.1999.3399.
7
Solution structure of the hRPABC14.4 subunit of human RNA polymerases.
Nat Struct Biol. 1999 Nov;6(11):1039-42. doi: 10.1038/14923.
9
Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution.
Cell. 1999 Sep 17;98(6):811-24. doi: 10.1016/s0092-8674(00)81515-9.
10
Methanobacterium thermoautotrophicum RNA polymerase and transcription in vitro.
J Bacteriol. 1999 Jul;181(14):4424-9. doi: 10.1128/JB.181.14.4424-4429.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验