Sato K, Dohi Y, Suzuki S, Miyagawa K, Takase H, Kojima M, van Breemen C
Department of Internal Medicine, Nagoya City Johoku Hospital, Nagoya, Japan.
J Cardiovasc Pharmacol. 2001 Sep;38(3):347-55. doi: 10.1097/00005344-200109000-00003.
We investigated the role of protein kinase C (PKC) isoforms on changes in sensitivity of contractile mechanisms to intracellular Ca(2+) (force /[Ca(2+)]i) by phenylephrine (0.1-100 microM) in rat tail arterial helical strips using simultaneous measurements of force and [Ca(2+)]i. Force/[Ca(2+)]Ii induced by phenylephrine was greater than that induced by 80 mM K+. Force/[Ca(2+)]i induced by phenylephrine in physiologic saline solution or low Ca(2+) solution was dependent on the agonist concentration. Removal of Ca(2+) completely abolished the phenylephrine-induced contraction. The PKC inhibitors staurosporine and calphostin C inhibited the increase in force/[Ca(2+)]i induced by phenylephrine to a much greater extent than that induced by 80 mM K+. LY379196, a specific PKCbeta inhibitor, did not inhibit the increase of calcium sensitivity due to phenylephrine. The classic PKC isoforms, alpha, betaI, and II not gamma were demonstrated in the artery by immunohistochemistry. These results suggest that in rat tail arterial smooth muscle, PKCalpha, and not beta or gamma, mediates the increase of changes in sensitivity of contractile mechanisms to intracellular Ca(2+) to high dose of alpha1 receptor stimulation (phenylephrine 100 microM) on nonphysiologic conditions.