Suppr超能文献

利用人工神经网络预测某些吡嗪类化合物的香气质量和阈值。

Prediction of the aroma quality and the threshold values of some pyrazines using artificial neural networks.

作者信息

Wailzer B, Klocker J, Buchbauer G, Ecker G, Wolschann P

机构信息

Institute of Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Währinger Strasse 17, A-1090 Vienna, Austria.

出版信息

J Med Chem. 2001 Aug 16;44(17):2805-13. doi: 10.1021/jm001129m.

Abstract

An artificial neural network is used to predict both the classification of aroma compounds and their flavor impression threshold values for a series of pyrazines. The classification set consists of 98 compounds (32 green, 43 bell-pepper, and 23 nutty smelling pyrazines), and the regression sets consist of 24 green and 37 bell-pepper odorous pyrazines. The best classification of the three aroma impressions (93.7%) is obtained by using a multilayer perceptron network architecture. To predict the threshold values of bell-pepper fragrance, a standard Pearson R correlation coefficient of 0.936 for the training set, 0.912 for the verification set, and 0.926 for the test set is received with two hidden layers consisting of two and one neurons. The network for the threshold prediction of the class of green-smelling pyrazines with one hidden layer containing three neurons turns out to be the best with a standard Pearson R correlation coefficient of 0.859 for the training, 0.918 for the verification, and 0.948 for the test set. These good correlations show that artificial neural networks are versatile tools for the classification of aroma compounds.

摘要

人工神经网络用于预测一系列吡嗪类香气化合物的分类及其风味印象阈值。分类集由98种化合物组成(32种具有青香、43种具有甜椒香和23种具有坚果香的吡嗪),回归集由24种具有青香和37种具有甜椒香的吡嗪组成。通过使用多层感知器网络架构获得了三种香气印象的最佳分类(93.7%)。为了预测甜椒香气的阈值,对于由两个和一个神经元组成的两个隐藏层,训练集的标准皮尔逊相关系数为0.936,验证集为0.912,测试集为0.926。对于具有一个包含三个神经元的隐藏层的青香类吡嗪阈值预测网络,结果是最佳的,训练集的标准皮尔逊相关系数为0.859,验证集为0.918,测试集为0.948。这些良好的相关性表明,人工神经网络是用于香气化合物分类的通用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验