Suppr超能文献

呋喃衍生的果香和肉香香气特征。

Structural Features for Furan-Derived Fruity and Meaty Aroma Impressions.

作者信息

Wailzer Bettina, Kocker Johanna, Wolschann Peter, Buchbauer Gerhard

出版信息

Nat Prod Commun. 2016 Oct;11(10):1475-1479.

Abstract

Furan derivatives are part of nearly all food aromas. They are mainly formed by thermal degradation of carbohydrates and ascorbic acid and from sugar-amino acid interactions during food processing. Caramel-like, sweet, fruity, nutty, meaty, and burnt odor impressions are associated with this class of compounds. In the presented work, structure-activity relationship (SAR) investigations are performed on a series of furan derivatives in order to find structural subunits, which are responsible for the particular characteristic flavors. Therefore, artificial neural networks are applied on a set of 35 furans with the aroma categories "meaty" or "fruity" to calculate a classification rule and class boundaries for these two aroma impressions. By training a multilayer perceptron network architecture with a backpropagation algorithm, a correct classification rate of 100% is obtained. The neural network is able to distinguish between the two studied groups by using the following significant descriptors as inputs: number of sulfur atoms, Looping Centric Information Index, Folding Degree Index and Petitjean Shape Indices. Finally, the results clearly demonstrate that artificial neural networks are successful tools to investigate non-linear qualitative structure-odor relationships of aroma compounds.

摘要

呋喃衍生物几乎存在于所有食品香气中。它们主要由碳水化合物和抗坏血酸的热降解以及食品加工过程中糖与氨基酸的相互作用形成。这类化合物具有类似焦糖、甜味、果香、坚果香、肉香和焦糊味等气味特征。在本研究中,对一系列呋喃衍生物进行了构效关系(SAR)研究,以找出赋予特定特征风味的结构亚基。因此,将人工神经网络应用于一组35种具有“肉香”或“果香”香气类别的呋喃化合物,以计算这两种香气特征的分类规则和类别边界。通过使用反向传播算法训练多层感知器网络结构,获得了100%的正确分类率。该神经网络能够以硫原子数、环心信息指数、折叠度指数和Petitjean形状指数等重要描述符作为输入来区分这两个研究组。最后,结果清楚地表明,人工神经网络是研究香气化合物非线性定性构效关系的成功工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验