Suppr超能文献

一种用于蒸气压的温度相关量子力学/神经网络模型。

A temperature-dependent quantum mechanical/neural net model for vapor pressure.

作者信息

Chalk A J, Beck B, Clark T

机构信息

Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg and Accelrys Inc., Computer-Chemie-Centrum, Nägelsbachstrasse 25, D-91052 Erlangen, Germany.

出版信息

J Chem Inf Comput Sci. 2001 Jul-Aug;41(4):1053-9. doi: 10.1021/ci0103222.

Abstract

We present a temperature-dependent model for vapor pressure based on a feed-forward neural net and descriptors calculated using AM1 semiempirical MO-theory. This model is based on a set of 7681 measurements at various temperatures performed on 2349 molecules. We employ a 10-fold cross-validation scheme that allows us to estimate errors for individual predictions. For the training set we find a standard deviation of the error s = 0.322 and a correlation coefficient (R(2)) of 0.976. The corresponding values for the validation set are s = 0.326 and R(2) = 0.976. We thoroughly investigate the temperature-dependence of our predictions to ensure that our model behaves in a physically reasonable manner. As a further test of temperature-dependence, we also examine the accuracy of our vapor pressure model in predicting the related physical properties, the boiling point, and the enthalpy of vaporization.

摘要

我们提出了一种基于前馈神经网络和使用AM1半经验分子轨道理论计算的描述符的蒸气压温度相关模型。该模型基于对2349个分子在不同温度下进行的7681次测量。我们采用10折交叉验证方案,使我们能够估计单个预测的误差。对于训练集,我们发现误差的标准偏差s = 0.322,相关系数(R(2))为0.976。验证集的相应值为s = 0.326和R(2) = 0.976。我们深入研究了预测的温度依赖性,以确保我们的模型在物理上表现合理。作为对温度依赖性的进一步测试,我们还检查了蒸气压模型在预测相关物理性质、沸点和汽化焓方面的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验