Suppr超能文献

弱电鱼干扰回避反应中相位提前和延迟超精确检测的神经机制。

A neural mechanism of hyperaccurate detection of phase advance and delay in the jamming avoidance response of weakly electric fish.

作者信息

Kashimori Y, Inoue S, Kambara T

机构信息

Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo, Japan.

出版信息

Biol Cybern. 2001 Aug;85(2):117-31. doi: 10.1007/PL00007999.

Abstract

The weakly electric fish Eigenmannia can detect the phase difference between a jamming signal and its own signal down to micros. To clarify the neuronal mechanism of this hyperaccurate detection of phase difference, we present a neural network model of the torus of the midbrain which plays an essential role in the detection of phase advances and delays. The small-cell model functions as a coincidence detector and can discriminate a time difference of more than 100 micros. The torus model consists of laminae 6 and 8. The model of lamina 6 is made with multiple encoding units, each of which consists of a single linear array of small cells and a single giant cell. The encoding unit encodes the phase difference into its spatio-temporal firing pattern. The spatially random distribution of small cells in each encoding unit improves the encoding ability of phase modulation. The neurons in lamina 8 can discriminate the phase advance and delay of jamming electric organ discharges (EODs) compared with the phase of the fish's own EOD by integrating simultaneously the outputs from multiple encoding units in lamina 6. The discrimination accuracy of the feature-detection neurons is of the order of 1 micros. The neuronal mechanism generating this hyperacuity arises from the spatial feature of the system that the innervation sites of small cells in different encoding units are distributed randomly and differently on the dendrites of single feature-detection neurons. The mechanism is similar to that of noise-enhanced information transmission.

摘要

弱电鱼 Eigenmannia 能够检测到干扰信号与其自身信号之间低至微秒级的相位差。为了阐明这种超高精度相位差检测的神经机制,我们提出了一种中脑环面的神经网络模型,该模型在检测相位超前和延迟方面起着至关重要的作用。小细胞模型起到了符合探测器的作用,能够辨别超过100微秒的时间差。环面模型由第6层和第8层组成。第6层模型由多个编码单元构成,每个编码单元由单个小细胞线性阵列和单个巨细胞组成。编码单元将相位差编码到其时空发放模式中。每个编码单元中小细胞的空间随机分布提高了相位调制的编码能力。第8层中的神经元通过同时整合第6层中多个编码单元的输出,能够辨别干扰电器官放电(EOD)相对于鱼自身EOD相位的相位超前和延迟。特征检测神经元的辨别精度约为1微秒。产生这种超敏锐度的神经机制源于系统的空间特征,即不同编码单元中小细胞的支配位点在单个特征检测神经元的树突上随机且不同地分布。该机制类似于噪声增强信息传输的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验