Suppr超能文献

通过蛋白激酶C的振荡易位和激活来控制星形胶质细胞的钙离子振荡和波。

Control of astrocyte Ca(2+) oscillations and waves by oscillating translocation and activation of protein kinase C.

作者信息

Codazzi F, Teruel M N, Meyer T

机构信息

Dibit, Department of Neurosciences, S. Raffaele Scientific Institute, 20132, Milan, Italy.

出版信息

Curr Biol. 2001 Jul 24;11(14):1089-97. doi: 10.1016/s0960-9822(01)00326-8.

Abstract

BACKGROUND

Glutamate-induced Ca2+ oscillations and waves coordinate astrocyte signaling responses, which in turn regulate neuronal excitability. Recent studies have suggested that the generation of these Ca2+ oscillations requires a negative feedback that involves the activation of conventional protein kinase C (cPKC). Here, we use total internal reflection fluorescence (TIRF) microscopy to investigate if and how periodic plasma membrane translocation of cPKC is used to generate Ca2+ oscillations and waves.

RESULTS

Glutamate stimulation of astrocytes triggered highly localized GFP-PKCgamma plasma membrane translocation events, induced rapid oscillations in GFP-PKCgamma translocation, and generated GFP-PKCgamma translocation waves that propagated across and between cells. These translocation responses were primarily mediated by the Ca2+-sensitive C2 domains of PKCgamma and were driven by localized Ca2+ spikes, by oscillations in Ca2+ concentration, and by propagating Ca(2+) waves, respectively. Interestingly, GFP-conjugated C1 domains from PKCgamma or PKCdelta that have been shown to bind diacylglycerol (DAG) also oscillated between the cytosol and the plasma membrane after glutamate stimulation, suggesting that PKC is repetitively activated by combined oscillating increases in Ca(2+) and DAG concentrations. The expression of C1 domains, which increases the DAG buffering capacity and thereby delays changes in DAG concentrations, led to a marked prolongation of Ca(2+) spikes, suggesting that PKC activation is involved in terminating individual Ca(2+) spikes and waves and in defining the time period between Ca(2+) spikes.

CONCLUSIONS

Our study suggests that cPKCs have a negative feedback role on Ca(2+) oscillations and waves that is mediated by their repetitive activation by oscillating DAG and Ca(2+) concentrations. Periodic translocation and activation of cPKC can be a rapid and markedly localized signaling event that can limit the duration of individual Ca(2+) spikes and waves and can define the Ca(2+) spike and wave frequencies.

摘要

背景

谷氨酸诱导的Ca2+振荡和波协调星形胶质细胞的信号反应,进而调节神经元的兴奋性。最近的研究表明,这些Ca2+振荡的产生需要一个负反馈,该负反馈涉及传统蛋白激酶C(cPKC)的激活。在这里,我们使用全内反射荧光(TIRF)显微镜来研究cPKC的周期性质膜转位是否以及如何用于产生Ca2+振荡和波。

结果

谷氨酸对星形胶质细胞的刺激引发了高度局部化的绿色荧光蛋白(GFP)-PKCγ质膜转位事件,诱导了GFP-PKCγ转位的快速振荡,并产生了在细胞间传播的GFP-PKCγ转位波。这些转位反应主要由PKCγ的Ca2+敏感C2结构域介导,分别由局部Ca2+尖峰、Ca2+浓度振荡和传播的Ca2+波驱动。有趣的是,已证明能结合二酰基甘油(DAG)的来自PKCγ或PKCδ的GFP偶联C1结构域在谷氨酸刺激后也在细胞质和质膜之间振荡,这表明PKC通过Ca2+和DAG浓度的联合振荡增加而被重复激活。C1结构域的表达增加了DAG的缓冲能力,从而延迟了DAG浓度的变化,导致Ca2+尖峰显著延长,这表明PKC激活参与终止单个Ca2+尖峰和波,并确定Ca2+尖峰之间的时间间隔。

结论

我们的研究表明,cPKC对Ca2+振荡和波具有负反馈作用,该作用由振荡的DAG和Ca2+浓度对其重复激活介导。cPKC的周期性转位和激活可以是一个快速且明显局部化的信号事件,它可以限制单个Ca2+尖峰和波的持续时间,并确定Ca2+尖峰和波的频率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验