Suppr超能文献

Activation of spinach pullulanase by reduction results in a decrease in the number of isomeric forms.

作者信息

Schindler I, Renz A, Schmid F X, Beck E

机构信息

Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Germany.

出版信息

Biochim Biophys Acta. 2001 Aug 13;1548(2):175-86. doi: 10.1016/s0167-4838(01)00228-x.

Abstract

Spinach starch debranching enzyme, a limit dextrinase or pullulanase (EC 3.2.1.41), is a monomeric protein of 100 kDa that produces up to seven coexisting and mutually interconvertible isomers of different specific activity, a phenomenon that has been termed microheterogeneity and for which a structural explanation has not yet been presented. The enzyme can be activated by reduction, in particular by thiol reagents, and inactivated by oxidation and the concomitant change of the patterns of its isomeric forms could be quantified by chromatofocusing. The hypothesis was examined that reduction of the enzyme's thiol groups shifts the isomer pattern towards the forms with a higher specific activity while oxidation favours the less active forms. Using TCEP as reductant only the form with the highest specific activity was obtained. This form was almost inaccessible for proteolysis by trypsin while the oxidized and GSH-activated enzyme yielded four peptides when treated with trypsin. Their sequence indicated cleavage predominantly of loops connecting the beta-strands and alpha-helices of the (beta/alpha)(8)-barrel which forms the catalytic site of the pullulanase. Formation of various disulphide bridges between the loops connecting the barrel structures -- predominantly on one side -- may be the reason for the microheterogeneity of the spinach pullulanase. In vivo, the enzyme maintains its activated state due to the high concentration of GSH in the chloroplast. However, the chloroplast's pH shifts from day (pH 8) to night (pH 7) and thus could also alter the activity of the protein in accordance with the required function in starch metabolism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验