Suppr超能文献

用于二元反应历史对照研究中样本量计算的统一幂法

Uniform power method for sample size calculation in historical control studies with binary response.

作者信息

Lee J J, Tseng C

机构信息

Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Control Clin Trials. 2001 Aug;22(4):390-400. doi: 10.1016/s0197-2456(01)00143-x.

Abstract

Makuch and Simon gave a sample size calculation formula for historical control (HC) studies that assumed that the observed response rate in the control group is the true response rate. We dropped this assumption and computed the expected power and expected sample size to evaluate the performance of the procedure under the omniscient model. When there is uncertainty in the HC response rate but this uncertainty is not considered, Makuch and Simon's method produces a sample size that gives a considerably lower power than that specified. Even the larger sample size obtained from the randomized design formula and applied to the HC setting does not guarantee the advertised power in the HC setting. We developed a new uniform power method to search for the sample size required for the experimental group to yield an exact power without relying on the estimated HC response rate being perfectly correct. The new method produces the correct uniform predictive power for all permissible response rates. The resulting sample size is closer to the sample size needed for the randomized design than Makuch and Simon's method, especially when there is a small difference in response rates or a limited sample size in the HC group. HC design may be a viable option in clinical trials when the patient selection bias and the outcome evaluation bias can be minimized. However, the common perception of the extra sample size savings is largely unjustified without the strong assumption that the observed HC response rate is equal to the true control response rate. Generally speaking, results from HC studies need to be confirmed by studies with concurrent controls and cannot be used for making definitive decisions.

摘要

马库奇和西蒙给出了历史对照(HC)研究的样本量计算公式,该公式假定对照组中观察到的反应率就是真实反应率。我们摒弃了这一假设,并计算了预期效能和预期样本量,以评估在全知模型下该方法的性能。当HC反应率存在不确定性但未被考虑时,马库奇和西蒙的方法得出的样本量所产生的效能远低于规定的效能。即便从随机设计公式获得并应用于HC设置的更大样本量,也无法保证在HC设置中达到所宣称的效能。我们开发了一种新的均匀效能方法,用于寻找实验组所需的样本量,以产生精确的效能,而不依赖于估计的HC反应率完全正确。新方法对所有允许的反应率都能产生正确的均匀预测效能。与马库奇和西蒙的方法相比,所得出的样本量更接近随机设计所需的样本量,尤其是当反应率差异较小或HC组样本量有限时。当患者选择偏倚和结果评估偏倚能够减至最小时,HC设计在临床试验中可能是一个可行的选择。然而,在没有观察到的HC反应率等于真实对照反应率这一强有力假设的情况下,通常认为能额外节省样本量的观点在很大程度上是没有依据的。一般来说,HC研究的结果需要通过有同期对照的研究来证实,不能用于做出确定性决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验