Suppr超能文献

在纳入历史数据的临床试验中进行盲法样本量重新计算。

Blinded sample size recalculation in clinical trials incorporating historical data.

作者信息

Hees Katharina, Kieser Meinhard

机构信息

Institute for Medical Biometry and Informatics, University of Heidelberg, Germany.

出版信息

Contemp Clin Trials. 2017 Dec;63:2-7. doi: 10.1016/j.cct.2017.07.013. Epub 2017 Jul 20.

Abstract

Recruiting sufficient patients within an acceptable time horizon is an issue for most clinical trials and is especially challenging in the field of rare diseases. It is therefore an attractive option to include historical data from previous (pilot) trials in the current study thus reducing the recruitment burden. In clinical trials with binary endpoint, the required sample size does not only depend on the type I error rate, the power, and the treatment group difference but additionally on the overall event rate. However, there is usually some uncertainty in the planning phase about the value of this nuisance parameter. We present methods for blinded sample size recalculation in the setting of two-arm superiority trials with historical control data where the overall rate is estimated mid-course and the sample size is recalculated accordingly. The operating characteristics of the method are investigated in terms of actual type I error rate, power, and expected sample size. Application is illustrated with a clinical trial example in patients with systemic sclerosis, a rare connective tissue disorder.

摘要

在可接受的时间范围内招募足够数量的患者是大多数临床试验面临的一个问题,在罕见病领域尤其具有挑战性。因此,将先前(试点)试验的历史数据纳入当前研究是一个有吸引力的选择,这样可以减轻招募负担。在具有二元终点的临床试验中,所需的样本量不仅取决于I型错误率、检验效能和治疗组差异,还取决于总体事件发生率。然而,在规划阶段,这个干扰参数的值通常存在一些不确定性。我们提出了在双臂优效性试验中利用历史对照数据进行盲法样本量重新计算的方法,其中总体发生率在试验过程中进行估计,并据此重新计算样本量。从实际I型错误率、检验效能和预期样本量方面研究了该方法的操作特性。通过一个针对系统性硬化症(一种罕见的结缔组织疾病)患者的临床试验实例说明了该方法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验