Missirlis F, Phillips J P, Jäckle H
Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, D-37070 Göttingen, Germany.
Curr Biol. 2001 Aug 21;11(16):1272-7. doi: 10.1016/s0960-9822(01)00393-1.
Molecular oxygen is key to aerobic life but is also converted into cytotoxic byproducts referred to as reactive oxygen species (ROS). Intracellular defense systems that protect cells from ROS-induced damage include glutathione reductase (GR), thioredoxin reductase (TrxR), superoxide dismutase (Sod), and catalase (Cat). Sod and Cat constitute an evolutionary conserved ROS defense system against superoxide; Sod converts superoxide anions to H(2)O(2), and Cat prevents free hydroxyl radical formation by breaking down H(2)O(2) into oxygen and water. As a consequence, they are important effectors in the life span determination of the fly Drosophila. ROS defense by TrxR and GR is more indirect. They transfer reducing equivalents from NADPH to thioredoxin (Trx) and glutathione disulfide (GSSG), respectively, resulting in Trx(SH)(2) and glutathione (GSH), which act as effective intracellular antioxidants. TrxR and GR were found to be molecularly conserved. However, the single GR homolog of Drosophila specifies TrxR activity, which compensates for the absence of a true GR system for recycling GSH. We show that TrxR null mutations reduce the capacity to adequately protect cells from cytotoxic damage, resulting in larval death, whereas mutations causing reduced TrxR activity affect pupal eclosion and cause a severe reduction of the adult life span. We also provide genetic evidence for a functional interaction between TrxR, Sod1, and Cat, indicating that the burden of ROS metabolism in Drosophila is shared by the two defense systems.
分子氧是有氧生命的关键,但也会被转化为称为活性氧(ROS)的细胞毒性副产物。保护细胞免受ROS诱导损伤的细胞内防御系统包括谷胱甘肽还原酶(GR)、硫氧还蛋白还原酶(TrxR)、超氧化物歧化酶(Sod)和过氧化氢酶(Cat)。Sod和Cat构成了一种进化保守的针对超氧化物的ROS防御系统;Sod将超氧阴离子转化为H₂O₂,而Cat通过将H₂O₂分解为氧气和水来防止游离羟基自由基的形成。因此,它们是果蝇寿命决定中的重要效应因子。TrxR和GR的ROS防御作用更为间接。它们分别将还原当量从NADPH转移到硫氧还蛋白(Trx)和谷胱甘肽二硫化物(GSSG),产生Trx(SH)₂和谷胱甘肽(GSH),它们作为有效的细胞内抗氧化剂发挥作用。已发现TrxR和GR在分子上是保守的。然而,果蝇唯一的GR同源物具有TrxR活性,可补偿缺乏用于循环利用GSH的真正GR系统的情况。我们表明,TrxR基因敲除突变会降低细胞充分保护自身免受细胞毒性损伤的能力,导致幼虫死亡,而导致TrxR活性降低的突变会影响蛹羽化并导致成虫寿命大幅缩短。我们还提供了TrxR、Sod1和Cat之间功能相互作用的遗传证据,表明果蝇中ROS代谢的负担由这两种防御系统分担。