Suppr超能文献

还原应激期间活性氧生成增加:线粒体谷胱甘肽和硫氧还蛋白还原酶的作用。

Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

作者信息

Korge Paavo, Calmettes Guillaume, Weiss James N

机构信息

UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.

UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.

出版信息

Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.

Abstract

Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage.

摘要

已知氧化还原平衡的两个极端情况都会导致心脏损伤,越来越多的证据表明,由氧化应激和还原应激诱导的损伤本质上都是氧化性的。在还原应激期间,当电子受体大多处于还原状态时,一些氧化还原蛋白反而可以将电子提供给O2,从而增加活性氧(ROS)的产生。然而,高水平的还原当量也会同时增强涉及氧化还原对(如NADPH/NADP+和GSH/GSSG)的ROS清除系统。在这里,我们的目标是探讨尽管ROS清除系统同时增强,但还原应激如何反常地增加线粒体ROS的净产生。使用重组酶和分离的透化心脏线粒体,我们发现两种通常具有抗氧化作用的基质NADPH还原酶,即谷胱甘肽还原酶和硫氧还蛋白还原酶,当电子流因抑制剂而受损或由于其天然电子受体GSSG和氧化型硫氧还蛋白的可用性有限时,会通过将其还原黄素蛋白中的电子泄漏给O2来产生H2O2。在这些条件下,H2O2的溢出取决于过氧化物酶活性对H2O2的还原作用,这可能会响应内源性或外源性因素调节氧化还原信号。这些发现可能解释了还原应激期间ROS的产生如何超过ROS清除能力,产生导致氧化损伤的线粒体ROS净溢出。这些酶可能是潜在的靶点,可用于增加癌细胞死亡或调节H2O2诱导的氧化还原信号,以保护心脏免受缺血/再灌注损伤。

相似文献

3
Alcohol induces mitochondrial redox imbalance in alveolar macrophages.酒精会诱导肺泡巨噬细胞中的线粒体氧化还原失衡。
Free Radic Biol Med. 2013 Dec;65:1427-1434. doi: 10.1016/j.freeradbiomed.2013.10.010. Epub 2013 Oct 16.

引用本文的文献

7
Glutathione-Dependent Pathways in Cancer Cells.谷胱甘肽依赖途径在癌细胞中。
Int J Mol Sci. 2024 Aug 1;25(15):8423. doi: 10.3390/ijms25158423.

本文引用的文献

5
The biological chemistry of hydrogen peroxide.过氧化氢的生物化学
Methods Enzymol. 2013;528:3-25. doi: 10.1016/B978-0-12-405881-1.00001-X.
7
Making do with what we have: use your bootstraps.尽力而为:依靠自己。
J Physiol. 2012 Aug 1;590(15):3403-6. doi: 10.1113/jphysiol.2012.239376.
10
Proteostasis and REDOX state in the heart.心脏中的蛋白质稳态和氧化还原状态。
Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H24-37. doi: 10.1152/ajpheart.00903.2011. Epub 2011 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验