Protopopescu V A, Hively And L M, Gailey P C
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6355, USA.
J Clin Neurophysiol. 2001 May;18(3):223-45. doi: 10.1097/00004691-200105000-00003.
The authors present a model-independent approach to quantify changes in the dynamics underlying nonlinear time-serial data. From time-windowed datasets, the authors construct discrete distribution functions on the phase space. Condition change between base case and test case distribution functions is assessed by dissimilarity measures via L1 distance and chi2 statistic. The discriminating power of these measures is first tested on noiseless data from the Lorenz and Bondarenko models, and is then applied to detecting dynamic change in multichannel clinical scalp EEG data. The authors compare the dissimilarity measures with the traditional nonlinear measures used in the analysis of chaotic systems. They also assess the potential usefulness of the new measures for robust, accurate, and timely forewarning of epileptic events.
作者提出了一种独立于模型的方法来量化非线性时间序列数据背后动态变化。作者从时间窗口数据集出发,在相空间上构建离散分布函数。通过L1距离和卡方统计量的差异度量来评估基础案例和测试案例分布函数之间的条件变化。这些度量的判别能力首先在来自洛伦兹模型和邦达连科模型的无噪声数据上进行测试,然后应用于检测多通道临床头皮脑电图数据中的动态变化。作者将这些差异度量与混沌系统分析中使用的传统非线性度量进行比较。他们还评估了这些新度量对于癫痫事件进行稳健、准确和及时预警的潜在有用性。