Suppr超能文献

一种用于趋旋微生物悬浮液的新连续介质模型。

A new continuum model for suspensions of gyrotactic micro-organisms.

作者信息

Pedley T J, Kessler J O

机构信息

Department of Applied Mathematical Studies, University of Leeds, UK.

出版信息

J Fluid Mech. 1990 Mar;212:155-82. doi: 10.1017/s0022112090001914.

Abstract

A new continuum model is formulated for dilute suspensions of swimming micro-organisms with asymmetric mass distributions. Account is taken of randomness in a cell's swimming direction, p, by postulating that the probability density function for p satisfies a Fokker-Planck equation analogous to that obtained for colloid suspensions in the presence of rotational Brownian motion. The deterministic torques on a cell, viscous and gravitational, are balanced by diffusion, represented by an isotropic rotary diffusivity Dr, which is unknown a priori, but presumably reflects stochastic influences on the cell's internal workings. When the Fokker-Planck equation is solved, macroscopic quantities such as the average cell velocity Vc, the particle diffusivity tensor D and the effective stress tensor sigma can be computed; Vc and D are required in the cell conservation equation, and sigma in the momentum equation. The Fokker-Planck equation contains two dimensionless parameters, lambda and epsilon; lambda is the ratio of the rotary diffusion time Dr-1 to the torque relaxation time B (balancing gravitational and viscous torques), while epsilon is a scale for the local vorticity or strain rate made dimensionless with B. In this paper we solve the Fokker-Planck equation exactly for epsilon = 0 (lambda arbitrary) and also obtain the first-order solution for small epsilon. Using experimental data on Vc and D obtained with the swimming alga, Chlamydomonas nivalis, in the absence of bulk flow, the epsilon = 0 results can be used to estimate the value of lambda for that species (lambda approximately 2.2; Dr approximately 0.13 s-1). The continuum model for small epsilon is then used to reanalyse the instability of a uniform suspension, previously investigated by Pedley, Hill & Kessler (1988). The only qualitatively different result is that there no longer seem to be circumstances in which disturbances with a non-zero vertical wavenumber are more unstable than purely horizontal disturbances. On the way, it is demonstrated that the only significant contribution to sigma, other than the basic Newtonian stress, is that derived from the stresslets associated with the cells' intrinsic swimming motions.

摘要

针对质量分布不对称的游动微生物稀悬浮液,构建了一种新的连续介质模型。通过假定细胞游动方向(p)的概率密度函数满足一个福克 - 普朗克方程,该方程类似于在存在旋转布朗运动的情况下胶体悬浮液所得到的方程,从而考虑了细胞游动方向的随机性。细胞上的确定性扭矩(粘性扭矩和重力扭矩)由扩散平衡,扩散由各向同性旋转扩散系数(D_r)表示,(D_r)先验未知,但大概反映了对细胞内部运作的随机影响。求解福克 - 普朗克方程后,可以计算诸如平均细胞速度(V_c)、粒子扩散张量(D)和有效应力张量(\sigma)等宏观量;细胞守恒方程需要(V_c)和(D),动量方程需要(\sigma)。福克 - 普朗克方程包含两个无量纲参数(\lambda)和(\varepsilon);(\lambda)是旋转扩散时间(D_r^{-1})与扭矩弛豫时间(B)(平衡重力和粘性扭矩)的比值,而(\varepsilon)是用(B)无量纲化的局部涡度或应变率的尺度。在本文中,我们精确求解了(\varepsilon = 0)((\lambda)任意)时的福克 - 普朗克方程,并得到了(\varepsilon)很小时的一阶解。利用在无整体流动情况下,对游动藻类雪衣藻获得的(V_c)和(D)的实验数据,(\varepsilon = 0)的结果可用于估计该物种的(\lambda)值((\lambda)约为(2.2);(D_r)约为(0.13 s^{-1}))。然后,利用(\varepsilon)很小时的连续介质模型重新分析了均匀悬浮液的不稳定性,这一问题先前由佩德利、希尔和凯斯勒(1988年)进行过研究。唯一在性质上不同的结果是,似乎不再存在垂直波数不为零的扰动比纯水平扰动更不稳定的情况。在此过程中,证明了除基本牛顿应力外,对(\sigma)的唯一显著贡献来自与细胞固有游动运动相关的应力子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验