Suppr超能文献

微泳者在涡旋中:动力学与捕获。

Microswimmers in vortices: dynamics and trapping.

机构信息

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

出版信息

Soft Matter. 2022 Dec 7;18(47):8931-8944. doi: 10.1039/d2sm00907b.

Abstract

Biological and artificial microswimmers often self-propel in external flows of vortical nature; relevant examples include algae in small-scale ocean eddies, spermatozoa in uterine peristaltic flows and bacteria in microfluidic devices. A recent experiment has shown that swimming bacteria in model vortices are expelled from the vortex all the way to a well-defined depletion zone (A. Sokolov and I. S. Aranson, Rapid expulsion of microswimmers by a vortical flow. , 2016, , 11114). In this paper, we propose a theoretical model to investigate the dynamics of elongated microswimmers in elementary vortices, namely active particles in two- and three-dimensional rotlets. A deterministic model first reveals the existence of bounded orbits near the centre of the vortex and unbounded orbits elsewhere. We further discover a conserved quantity of motion that allows us to map the phase space according to the type of the orbit (bounded vs unbounded). We next introduce translational and rotational noise into the system. Using a Fokker-Planck formalism, we quantify the quality of trapping near the centre of the vortex by examining the probability of escape and the mean time of escape from the region of deterministically bounded orbits. We finally show how to use these findings to formulate a prediction for the radius of the depletion zone, which compares favourably with the experiments (A. Sokolov and I. S. Aranson, Rapid expulsion of microswimmers by a vortical flow. , 2016, , 11114).

摘要

生物和人工微游泳者经常在外流的漩涡中自主推进;相关的例子包括海洋小尺度涡流中的藻类、子宫蠕动流中的精子和微流控设备中的细菌。最近的一项实验表明,在模型涡旋中游泳的细菌会被完全逐出涡旋,直到一个明确的耗尽区(A. Sokolov 和 I. S. Aranson,通过涡旋快速驱逐微游泳者, 2016 年, ,11114)。在本文中,我们提出了一个理论模型来研究基本涡旋中长形微游泳者的动力学,即二维和三维旋流中的活性粒子。一个确定性模型首先揭示了涡旋中心附近存在有界轨道和其他地方的无界轨道。我们进一步发现了一个运动守恒量,它允许我们根据轨道的类型(有界或无界)对相空间进行映射。接下来,我们向系统中引入平移和旋转噪声。使用福克-普朗克形式主义,我们通过检查逃离概率和从确定性有界轨道区域逃离的平均时间,来量化涡旋中心附近的捕获质量。最后,我们展示了如何利用这些发现来预测耗尽区的半径,这与实验结果非常吻合(A. Sokolov 和 I. S. Aranson,通过涡旋快速驱逐微游泳者, 2016 年, ,11114)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ac/9727827/e2cbcfb719cc/d2sm00907b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验