Suppr超能文献

玉米根的斜向重力性

Diagravitropism in corn roots.

作者信息

Leopold A C, Wettlaufer S H

机构信息

Boyce Thompson Institute, Cornell University, Ithaca, New York 14853.

出版信息

Plant Physiol. 1988;87(4):803-5. doi: 10.1104/pp.87.4.803.

Abstract

The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

摘要

在黑暗中生长的优良玉米(Zea mays L.)根的斜向重力行为为比较两种性质不同的重力系统提供了一个机会。与正向重力性一样,斜向重力性被证明需要根冠的存在,弯曲开始的时间进程相似,呈现时间也相似。与正向重力性相反,斜向重力性对钙的需求似乎更有限,因为它对EGTA洗脱钙不敏感,对随后添加的钙/EGTA复合物也不敏感。这些结果被解释为表明,虽然两种重力性类型共享相同的传感系统,但涉及不同的转导系统,一个用于斜向重力性,相对独立于钙,另一个用于正向重力性,明显依赖于钙。

相似文献

1
Diagravitropism in corn roots.
Plant Physiol. 1988;87(4):803-5. doi: 10.1104/pp.87.4.803.
2
Springback and diagravitropism in Merit corn roots.
Plant Physiol. 1992 Jun;99(2):632-4. doi: 10.1104/pp.99.2.632.
3
Springback in root gravitropism.
Plant Physiol. 1989;91(4):1247-50. doi: 10.1104/pp.91.4.1247.
4
How roots respond to gravity.
Sci Am. 1986 Dec;255(6):112-9. doi: 10.1038/scientificamerican1286-112.
5
Electrotropism of maize roots. Role of the root cap and relationship to gravitropism.
Plant Physiol. 1990;94(3):913-8. doi: 10.1104/pp.94.3.913.
7
Calcium in the regulation of gravitropism by light.
Plant Physiol. 1988;86(4):1276-80. doi: 10.1104/pp.86.4.1276.
10
Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic.
Plant Physiol. 1990;92(2):310-5. doi: 10.1104/pp.92.2.310.

引用本文的文献

1
Hydrotropism and its interaction with gravitropism in maize roots.
Plant Physiol. 1991;96(2):558-64. doi: 10.1104/pp.96.2.558.
2
Organization of cortical microtubules in graviresponding maize roots.
Planta. 1993;191:231-7. doi: 10.1007/BF00199754.
3
Springback and diagravitropism in Merit corn roots.
Plant Physiol. 1992 Jun;99(2):632-4. doi: 10.1104/pp.99.2.632.
4
Light regulation of the growth response in corn root gravitropism.
Plant Physiol. 1992;98(3):835-9. doi: 10.1104/pp.98.3.835.
5
Regulation of phytochrome message abundance in root caps of maize.
Plant Physiol. 1991;95(2):544-50. doi: 10.1104/pp.95.2.544.
6
Springback in root gravitropism.
Plant Physiol. 1989;91(4):1247-50. doi: 10.1104/pp.91.4.1247.
7
Interactions between red light, abscisic acid, and calcium in gravitropism.
Plant Physiol. 1989;89(3):875-8. doi: 10.1104/pp.89.3.875.

本文引用的文献

1
Photobiology of diagravitropic maize roots.
Plant Physiol. 1984 Jun;75(2):359-63. doi: 10.1104/pp.75.2.359.
2
Gravity-Induced Polar Transport of Calcium across Root Tips of Maize.
Plant Physiol. 1983 Dec;73(4):874-6. doi: 10.1104/pp.73.4.874.
4
Root gravitropism.
Physiol Plant. 1985;65:341-4. doi: 10.1111/j.1399-3054.1985.tb02405.x.
5
The role of calcium ions in gravity signal perception and transduction.
Physiol Plant. 1987;71:401-7. doi: 10.1111/j.1399-3054.1987.tb04363.x.
7
Calcium in the regulation of gravitropism by light.
Plant Physiol. 1988;86(4):1276-80. doi: 10.1104/pp.86.4.1276.
8
Cellular mechanisms controlling light-stimulated gravitropism: role of calcium.
CRC Crit Rev Plant Sci. 1987;5(3):205-36. doi: 10.1080/07352688709382240.
9
How roots respond to gravity.
Sci Am. 1986 Dec;255(6):112-9. doi: 10.1038/scientificamerican1286-112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验