Kern J W
Rockwell International Space Systems Division, Houston, TX 77058, USA.
Radiat Meas. 1994 Jan;23(1):43-8. doi: 10.1016/1350-4487(94)90021-3.
This paper reviews and extends modelling of anisotropic fluxes for radiation belt protons to provide closed-form equations for vector proton fluxes and proton flux anisotropy in terms of standard omnidirectional flux models. These equations provide a flexible alternative to the data-based vector flux models currently available. At higher energies, anisotropy of trapped proton flux in the upper atmosphere depends strongly on the variation of atmospheric density with altitude. Calculations of proton flux anisotropies using present models require specification of the average atmospheric density along trapped particle trajectories and its variation with mirror point altitude. For an isothermal atmosphere, calculations show that in a dipole magnetic field, the scale height of this trajectory-averaged density closely approximates the scale height of the atmosphere at the mirror point of the trapped particle. However, for the earth's magnetic field, the altitudes of mirror points vary for protons drifting in longitude. This results in a small increase in longitude-averaged scale heights compared to the atmospheric scale heights at minimum mirror point altitudes. The trajectory-averaged scale heights are increased by about 10-20% over scale heights from standard atmosphere models for protons mirroring at altitudes less than 500 km in the South Atlantic Anomaly. Atmospheric losses of protons in the geomagnetic field minimum in the South Atlantic Anomaly control proton flux anisotropies of interest for radiation studies in low earth orbit. Standard atmosphere models provide corrections for diurnal, seasonal and solar activity-driven variations. Thus, determination of an "equilibrium" model of trapped proton fluxes of a given energy requires using a scale height that is time-averaged over the lifetime of the protons. The trajectory-averaged atmospheric densities calculated here lead to estimates for trapped proton lifetimes. These lifetimes provide appropriate time-averaging intervals for equilibrium models of trapped proton fluxes.
本文回顾并扩展了辐射带质子各向异性通量的建模,以根据标准全向通量模型提供矢量质子通量和质子通量各向异性的封闭形式方程。这些方程为当前可用的基于数据的矢量通量模型提供了一种灵活的替代方案。在较高能量下,高层大气中捕获质子通量的各向异性强烈依赖于大气密度随高度的变化。使用当前模型计算质子通量各向异性需要指定沿捕获粒子轨迹的平均大气密度及其随镜像点高度的变化。对于等温大气,计算表明,在偶极磁场中,这种轨迹平均密度的标高与捕获粒子镜像点处大气的标高非常接近。然而,对于地球磁场,质子在经度上漂移时镜像点的高度会发生变化。这导致经度平均标高比最小镜像点高度处的大气标高略有增加。在南大西洋异常区,对于在低于500公里高度镜像的质子,轨迹平均标高比标准大气模型的标高增加了约10%-20%。南大西洋异常区地磁场最小值处质子的大气损失控制着低地球轨道辐射研究中感兴趣的质子通量各向异性。标准大气模型对昼夜、季节和太阳活动驱动的变化进行了修正。因此,确定给定能量的捕获质子通量的“平衡”模型需要使用在质子寿命期间进行时间平均的标高。这里计算的轨迹平均大气密度导致了对捕获质子寿命的估计。这些寿命为捕获质子通量的平衡模型提供了适当的时间平均间隔。